Suppr超能文献

评估2型糖尿病患者的心血管死亡率:基于竞争风险马尔可夫链和加法回归模型的分析。

Evaluating cardiovascular mortality in type 2 diabetes patients: an analysis based on competing risks Markov chains and additive regression models.

作者信息

Rosato Rosalba, Ciccone G, Bo S, Pagano G F, Merletti F, Gregori D

机构信息

Unit of Cancer Epidemiology, S. Giovanni Battista Hospital and University of Turin and CPO Piemonte, Italy.

出版信息

J Eval Clin Pract. 2007 Jun;13(3):422-8. doi: 10.1111/j.1365-2753.2006.00732.x.

Abstract

RATIONALE, AIMS AND OBJECTIVES: Type 2 diabetes represents a condition significantly associated with increased cardiovascular mortality. The aims of the study are: (i) to estimate the cumulative incidence function for cause-specific mortality using Cox and Aalen model; (ii) to describe how the prediction of cardiovascular or other causes mortality changes for patients with different pattern of covariates; (iii) to show if different statistical methods may give different results.

METHODS

Cox and Aalen additive regression model through the Markov chain approach, are used to estimate the cause-specific hazard for cardiovascular or other causes mortality in a cohort of 2865 type 2 diabetic patients without insulin treatment. The models are compared in the estimation of the risk of death for patients of different severity.

RESULTS

For younger patients with a better covariates profile, the Cumulative Incidence Function estimated by Cox and Aalen model was almost the same; for patients with the worst covariates profile, models gave different results: at the end of follow-up cardiovascular mortality rate estimated by Cox and Aalen model was 0.26 [95% confidence interval (CI) = 0.21-0.31] and 0.14 (95% CI = 0.09-0.18).

CONCLUSIONS

Standard Cox and Aalen model capture the risk process for patients equally well with average profiles of co-morbidities. The Aalen model, in addition, is shown to be better at identifying cause-specific risk of death for patients with more severe clinical profiles. This result is relevant in the development of analytic tools for research and resource management within diabetes care.

摘要

原理、目的与目标:2型糖尿病是一种与心血管死亡率增加显著相关的疾病。本研究的目的是:(i)使用Cox模型和Aalen模型估计特定病因死亡率的累积发病率函数;(ii)描述不同协变量模式的患者心血管或其他病因死亡率预测如何变化;(iii)表明不同的统计方法是否会得出不同的结果。

方法

通过马尔可夫链方法使用Cox模型和Aalen加法回归模型,估计2865例未接受胰岛素治疗的2型糖尿病患者队列中心血管或其他病因死亡率的特定病因风险。对不同严重程度患者的死亡风险估计中对这些模型进行比较。

结果

对于协变量情况较好的年轻患者,Cox模型和Aalen模型估计的累积发病率函数几乎相同;对于协变量情况最差的患者,模型得出了不同的结果:随访结束时,Cox模型和Aalen模型估计的心血管死亡率分别为0.26 [95%置信区间(CI)= 0.21 - 0.31]和0.14(95% CI = 0.09 - 0.18)。

结论

标准的Cox模型和Aalen模型对合并症平均情况的患者同样能很好地捕捉风险过程。此外,Aalen模型在识别临床情况更严重患者的特定病因死亡风险方面表现更好。这一结果在糖尿病护理研究和资源管理分析工具的开发中具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验