Suppr超能文献

基于独立成分分析的多元时间序列异常值检测

Outliers detection in multivariate time series by independent component analysis.

作者信息

Baragona Roberto, Battaglia Francesco

机构信息

Dipartimento di Sociologia e Comunicazione, Università di Roma La Sapienza, 00198 Roma, Italy.

出版信息

Neural Comput. 2007 Jul;19(7):1962-84. doi: 10.1162/neco.2007.19.7.1962.

Abstract

In multivariate time series, outlying data may be often observed that do not fit the common pattern. Occurrences of outliers are unpredictable events that may severely distort the analysis of the multivariate time series. For instance, model building, seasonality assessment, and forecasting may be seriously affected by undetected outliers. The structure dependence of the multivariate time series gives rise to the well-known smearing and masking phenomena that prevent using most outliers' identification techniques. It may be noticed, however, that a convenient way for representing multiple outliers consists of superimposing a deterministic disturbance to a gaussian multivariate time series. Then outliers may be modeled as nongaussian time series components. Independent component analysis is a recently developed tool that is likely to be able to extract possible outlier patterns. In practice, independent component analysis may be used to analyze multivariate observable time series and separate regular and outlying unobservable components. In the factor models framework too, it is shown that independent component analysis is a useful tool for detection of outliers in multivariate time series. Some algorithms that perform independent component analysis are compared. It has been found that all algorithms are effective in detecting various types of outliers, such as patches, level shifts, and isolated outliers, even at the beginning or the end of the stretch of observations. Also, there is no appreciable difference in the ability of different algorithms to display the outlying observations pattern.

摘要

在多变量时间序列中,经常会观察到不符合常见模式的异常数据。异常值的出现是不可预测的事件,可能会严重扭曲多变量时间序列的分析。例如,模型构建、季节性评估和预测可能会受到未检测到的异常值的严重影响。多变量时间序列的结构依赖性会导致众所周知的拖尾和掩盖现象,这使得大多数异常值识别技术无法使用。然而,可以注意到,一种表示多个异常值的便捷方法是将确定性干扰叠加到高斯多变量时间序列上。然后,异常值可以被建模为非高斯时间序列分量。独立成分分析是一种最近开发的工具,可能能够提取可能的异常模式。在实践中,独立成分分析可用于分析多变量可观测时间序列,并分离出常规和异常的不可观测成分。在因子模型框架中,也表明独立成分分析是检测多变量时间序列中异常值的有用工具。对一些执行独立成分分析的算法进行了比较。已经发现,所有算法在检测各种类型的异常值(如斑块、水平变化和孤立异常值)方面都是有效的,即使在观测序列的开始或结束时也是如此。此外,不同算法在显示异常观测模式的能力方面没有明显差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验