Taatjes Craig A, Gijsbertsen Arjan, de Lange Marc J L, Stolte Steven
Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, USA.
J Phys Chem A. 2007 Aug 9;111(31):7631-9. doi: 10.1021/jp0712405. Epub 2007 Jun 2.
Relative integrated cross sections are measured for spin-orbit-conserving, rotationally inelastic scattering of NO (2Pi1/2), hexapole-selected in the upper Lambda-doublet level of the ground rotational state (j = 0.5), in collisions with D2 at a nominal energy of 551 cm-1. The final state of the NO molecule is detected by laser-induced fluorescence (LIF). The state-selected NO molecule is oriented with either the N end or the O end toward the incoming D2 molecule by application of a static electric field E in the scattering region. This field is directed parallel or antiparallel to the relative velocity vector v. Comparison of signals taken for the different applied field directions gives the experimental steric asymmetry SA, defined by SA = (sigma v upward arrow downward arrow E - sigma v upward arrow upward arrow E)/(sigma v upward arrow downward arrow E + sigma v upward arrow upward arrow E), which is equal to within a factor of -1 to the molecular steric effect, Si-->f identical with (sigmaD2-->NO - sigmaD2-->ON)/(sigmaD2-->NO + sigmaD2-->ON). The dependence of the integral inelastic cross section on the incoming Lambda-doublet component is also measured as a function of the final rotational (jfinal) and Lambda-doublet (epsilonfinal) state. The measured steric asymmetries are similar to those previously observed for NO-He scattering. Spin-orbit manifold-conserving collisions exhibit a larger propensity for parity conservation than their NO-He counterparts. The results are interpreted in the context of the recently developed quasi-quantum treatment (QQT) of rotationally inelastic scattering [Gijsbertsen, A.; Linnartz, H.; Taatjes, C. A.; Stolte, S. J. Am. Chem. Soc. 2006, 128, 8777]. The QQT predictions can be inverted to obtain a fitted hard-shell potential that reproduces the experimental steric asymmetry; this fitted potential gives an empirical estimate of the anisotropy of the repulsive interaction between NO and D2. QQT computation of the differential cross section using this simple model potential shows reasonable agreement with the measured differential cross sections.
测量了在标称能量为551厘米⁻¹的情况下,处于基态转动能级(j = 0.5)的上Λ-双重态能级经六极选择的NO(²Π₁/₂)与D₂发生的自旋轨道守恒、转动非弹性散射的相对积分截面。通过激光诱导荧光(LIF)检测NO分子的终态。在散射区域施加静电场E,使态选择的NO分子的N端或O端朝向入射的D₂分子。该场与相对速度矢量v平行或反平行。比较不同施加场方向下获取的信号,得到实验空间不对称性SA,其定义为SA = (σv↑↓E - σv↑↑E)/(σv↑↓E + σv↑↑E),它在因子-1范围内等于分子空间效应Si→f,即Si→f = (σD₂→NO - σD₂→ON)/(σD₂→NO + σD₂→ON)。还测量了积分非弹性截面随入射Λ-双重态分量的变化,作为终态转动(j终)和Λ-双重态(ε终)态的函数。测量的空间不对称性与先前观察到的NO-He散射的类似。自旋轨道多重态守恒碰撞比其NO-He对应物表现出更大的宇称守恒倾向。在最近发展的转动非弹性散射的准量子处理(QQT)[吉斯伯森,A.;林纳茨,H.;塔捷斯,C. A.;斯托尔特,S. J. Am. Chem. Soc. 2006, 128, 8777]的背景下对结果进行了解释。QQT预测可以反转以获得拟合的硬球势,该势重现了实验空间不对称性;这个拟合势给出了NO与D₂之间排斥相互作用各向异性的经验估计。使用这个简单模型势对微分截面进行的QQT计算与测量的微分截面显示出合理的一致性。