Suppr超能文献

用于海马体-皮质假体的尖峰序列转换的非线性动力学建模。

Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.

作者信息

Song Dong, Chan Rosa H M, Marmarelis Vasilis Z, Hampson Robert E, Deadwyler Sam A, Berger Theodore W

机构信息

Department of Biomedical Engineering, Program in Neuroscience, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.

Abstract

One of the fundamental principles of cortical brain regions, including the hippocampus, is that information is represented in the ensemble firing of populations of neurons, i.e., spatio-temporal patterns of electrophysiological activity. The hippocampus has long been known to be responsible for the formation of declarative, or fact-based, memories. Damage to the hippocampus disrupts the propagation of spatio-temporal patterns of activity through hippocampal internal circuitry, resulting in a severe anterograde amnesia. Developing a neural prosthesis for the damaged hippocampus requires restoring this multiple-input, multiple-output transformation of spatio-temporal patterns of activity. Because the mechanisms underlying synaptic transmission and generation of electrical activity in neurons are inherently nonlinear, any such prosthesis must be based on a nonlinear multiple-input, multiple-output model. In this paper, we have formulated the transformational process of multi-site propagation of spike activity between two subregions of the hippocampus (CA3 and CA1) as the identification of a multiple-input, multiple-output (MIMO) system, and proposed that it can be decomposed into a series of multiple-input, single-output (MISO) systems. Each MISO system is modeled as a physiologically plausible structure that consists of 1) linear/nonlinear feedforward Volterra kernels modeling synaptic transmission and dendritic integration, 2) a linear feedback Volterra kernel modeling spike-triggered after-potentials, 3) a threshold for spike generation, 4) a summation process for somatic integration, and 5) a noise term representing intrinsic neuronal noise and the contributions of unobserved inputs. Input and output spike trains were recorded from hippocampal CA3 and CA1 regions of rats performing a spatial delayed-nonmatch-to-sample memory task that requires normal hippocampal function. Kernels were expanded with Laguerre basis functions and estimated using a maximum-likelihood method. Complexity of the feedforward kernel was progressively increased to capture higher-order system nonlinear dynamics. Results showed higher prediction accuracies as kernel complexity increased. Self-kernels describe the nonlinearities within each input. Cross-kernels capture the nonlinear interaction between inputs. Second- and third-order nonlinear models were found to successfully predict the CA1 output spike distribution based on CA3 input spike trains. First-order, linear models were shown to be insufficient.

摘要

包括海马体在内的大脑皮质区域的一个基本原理是,信息由神经元群体的整体放电来表征,即电生理活动的时空模式。长期以来,人们一直认为海马体负责陈述性记忆(即基于事实的记忆)的形成。海马体受损会破坏活动的时空模式在海马体内部回路中的传播,导致严重的顺行性遗忘。为受损海马体开发神经假体需要恢复这种活动时空模式的多输入多输出转换。由于神经元中突触传递和电活动产生的潜在机制本质上是非线性的,任何此类假体都必须基于非线性多输入多输出模型。在本文中,我们将海马体两个子区域(CA3和CA1)之间尖峰活动的多位点传播的转换过程表述为一个多输入多输出(MIMO)系统的识别,并提出它可以分解为一系列多输入单输出(MISO)系统。每个MISO系统被建模为一个生理上合理的结构,该结构由以下部分组成:1)对突触传递和树突整合进行建模的线性/非线性前馈Volterra核;2)对尖峰触发后电位进行建模的线性反馈Volterra核;3)尖峰产生的阈值;4)体细胞整合的求和过程;5)一个表示内在神经元噪声和未观察到的输入贡献的噪声项。从执行需要正常海马体功能的空间延迟非匹配样本记忆任务的大鼠的海马体CA3和CA1区域记录输入和输出尖峰序列。用拉盖尔基函数扩展核,并使用最大似然法进行估计。逐步增加前馈核的复杂度以捕捉高阶系统非线性动力学。结果表明,随着核复杂度的增加,预测准确率更高。自核描述每个输入内的非线性。交叉核捕捉输入之间的非线性相互作用。发现二阶和三阶非线性模型能够基于CA3输入尖峰序列成功预测CA1输出尖峰分布。结果表明一阶线性模型是不够的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验