Suppr超能文献

环核苷酸对超极化激活的环核苷酸门控通道的调控:构成配体结合、选择性和效能基础的残基接触。

Gating of HCN channels by cyclic nucleotides: residue contacts that underlie ligand binding, selectivity, and efficacy.

作者信息

Zhou Lei, Siegelbaum Steven A

机构信息

Center for Neurobiology and Behavior, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.

出版信息

Structure. 2007 Jun;15(6):655-70. doi: 10.1016/j.str.2007.04.012.

Abstract

Cyclic nucleotides (cNMPs) regulate the activity of various proteins by interacting with a conserved cyclic nucleotide-binding domain (CNBD). Although X-ray crystallographic studies have revealed the structures of several CNBDs, the residues responsible for generating the high efficacy with which ligand binding leads to protein activation remain unknown. Here, we combine molecular dynamics simulations with mutagenesis to identify ligand contacts important for the regulation of the hyperpolarization-activated HCN2 channel by cNMPs. Surprisingly, out of 7 residues that make strong contacts with ligand, only R632 in the C helix of the CNBD is essential for high ligand efficacy, due to its selective stabilization of cNMP binding to the open state of the channel. Principal component analysis suggests that a local movement of the C helix upon ligand binding propagates through the CNBD of one subunit to the C linker of a neighboring subunit to apply force to the gate of the channel.

摘要

环核苷酸(cNMPs)通过与保守的环核苷酸结合结构域(CNBD)相互作用来调节各种蛋白质的活性。尽管X射线晶体学研究已经揭示了几种CNBD的结构,但对于配体结合导致蛋白质激活的高效能所涉及的残基仍不清楚。在这里,我们将分子动力学模拟与诱变相结合,以确定对cNMPs调节超极化激活的HCN2通道重要的配体接触。令人惊讶的是,在与配体有强烈接触的7个残基中,由于其选择性地稳定了cNMP与通道开放状态的结合,CNBD的C螺旋中的R632对于高配体效能至关重要。主成分分析表明,配体结合时C螺旋的局部运动通过一个亚基的CNBD传播到相邻亚基的C连接体,从而对通道的门施加力。

相似文献

2
Structural basis for modulation and agonist specificity of HCN pacemaker channels.
Nature. 2003 Sep 11;425(6954):200-5. doi: 10.1038/nature01922.
4
Structure and rearrangements in the carboxy-terminal region of SpIH channels.
Structure. 2007 Jun;15(6):671-82. doi: 10.1016/j.str.2007.04.008.
5
The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms.
J Biol Chem. 2020 Jun 12;295(24):8164-8173. doi: 10.1074/jbc.RA120.013281. Epub 2020 Apr 27.
8
Absence of direct cyclic nucleotide modulation of mEAG1 and hERG1 channels revealed with fluorescence and electrophysiological methods.
J Biol Chem. 2009 Oct 9;284(41):27989-27997. doi: 10.1074/jbc.M109.016337. Epub 2009 Aug 11.
9
Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels.
J Gen Physiol. 2004 Dec;124(6):663-77. doi: 10.1085/jgp.200409178.
10
Distinct structural determinants of efficacy and sensitivity in the ligand-binding domain of cyclic nucleotide-gated channels.
J Biol Chem. 2004 Jan 30;279(5):3553-62. doi: 10.1074/jbc.M310545200. Epub 2003 Oct 31.

引用本文的文献

2
A high affinity switch for cAMP in the HCN pacemaker channels.
Nat Commun. 2024 Jan 29;15(1):843. doi: 10.1038/s41467-024-45136-y.
3
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies.
Biomedicines. 2023 Jan 19;11(2):269. doi: 10.3390/biomedicines11020269.
4
Uncoupling of Voltage- and Ligand-Induced Activation in HCN2 Channels by Glycine Inserts.
Front Physiol. 2022 Aug 25;13:895324. doi: 10.3389/fphys.2022.895324. eCollection 2022.
5
Altered cyclic nucleotide binding and pore opening in a diseased human HCN4 channel.
Biophys J. 2022 Apr 5;121(7):1166-1183. doi: 10.1016/j.bpj.2022.02.035. Epub 2022 Feb 24.
6
Optogenetic modulation of real-time nanoscale dynamics of HCN channels using photoactivated adenylyl cyclases.
RSC Chem Biol. 2021 Mar 8;2(3):863-875. doi: 10.1039/d0cb00124d. eCollection 2021 Jun 1.
7
Allosteric signaling in C-linker and cyclic nucleotide-binding domain of HCN2 channels.
Biophys J. 2021 Mar 2;120(5):950-963. doi: 10.1016/j.bpj.2021.01.017. Epub 2021 Jan 28.
9
-modified cAMP derivatives that activate protein kinase A also act as full agonists of murine HCN2 channels.
J Biol Chem. 2019 Nov 22;294(47):17978-17987. doi: 10.1074/jbc.RA119.010246. Epub 2019 Oct 15.
10
Binding and structural asymmetry governs ligand sensitivity in a cyclic nucleotide-gated ion channel.
J Gen Physiol. 2019 Oct 7;151(10):1190-1212. doi: 10.1085/jgp.201812162. Epub 2019 Sep 3.

本文引用的文献

1
PcrA helicase, a prototype ATP-driven molecular motor.
Structure. 2006 Sep;14(9):1345-53. doi: 10.1016/j.str.2006.06.017.
2
cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations.
Biophys J. 2006 May 15;90(10):3428-33. doi: 10.1529/biophysj.105.071621. Epub 2006 Feb 24.
3
CNG and HCN channels: two peas, one pod.
Annu Rev Physiol. 2006;68:375-401. doi: 10.1146/annurev.physiol.68.040104.134728.
4
Dynamic binding of PKA regulatory subunit RI alpha.
Structure. 2006 Jan;14(1):141-9. doi: 10.1016/j.str.2005.09.019.
5
A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.
Protein Sci. 2006 Jan;15(1):113-21. doi: 10.1110/ps.051723606. Epub 2005 Dec 1.
6
The cAMP binding domain: an ancient signaling module.
Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):45-50. doi: 10.1073/pnas.0408579102. Epub 2004 Dec 23.
8
Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel.
Cell. 2004 Nov 24;119(5):615-27. doi: 10.1016/j.cell.2004.10.030.
9
PRODRG: a tool for high-throughput crystallography of protein-ligand complexes.
Acta Crystallogr D Biol Crystallogr. 2004 Aug;60(Pt 8):1355-63. doi: 10.1107/S0907444904011679. Epub 2004 Jul 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验