Suppr超能文献

Crystallization of silver carboxylates from sodium carboxylate mixtures.

作者信息

Dong Jingshan, Whitcomb David R, McCormick Alon V, Davis H Ted

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA.

出版信息

Langmuir. 2007 Jul 17;23(15):7963-71. doi: 10.1021/la063321i. Epub 2007 Jun 14.

Abstract

Silver carboxylates can be made by the reaction of silver nitrate and the corresponding sodium carboxylates. The length of the alkyl chain has a significant impact on the product behavior. In this study, 18, 20, and 22 carbon chains (stearate, arachidate, and behenate, respectively) have been selected. All three sodium carboxylates are very insoluble in water at room temperature. Solutions are obtained above the Krafft temperature, which precipitates lamellar crystals if cooled at the proper cooling rate. Depending on the chain length, metastable morphologies, such as vesicles and tiny fibers, can be seen consecutively before hexagonal plates form. The carboxylate with the shorter chain length reaches equilibrium more quickly. All three silver carboxylates also take on a lamellar structure. Small-angle X-ray scattering (SAXS) shows that the d spacing of the crystals increases as the chain length increases. Cryo-TEM illustrates that the crystallites are the result of micelle nucleation and micelle aggregation. In addition, the crystallization process in the presence of silver bromide nanocrystals has been investigated. In the initial stage, an epitaxial interface is formed between the silver carboxylate crystallites and the cubic silver bromide grains. Budlike and strandlike structures grow because of it. The consequent strand enclosure restrains the crystal growth, which reduces the size and changes the morphology of the crystals.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验