Zhang Zhuqing, Chen Hao, Lai Luhua
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Bioinformatics. 2007 Sep 1;23(17):2218-25. doi: 10.1093/bioinformatics/btm325. Epub 2007 Jun 28.
Experimental evidence suggests that certain short protein segments have stronger amyloidogenic propensities than others. Identification of the fibril-forming segments of proteins is crucial for understanding diseases associated with protein misfolding and for finding favorable targets for therapeutic strategies.
In this study, we used the microcrystal structure of the NNQQNY peptide from yeast prion protein and residue-based statistical potentials to establish an algorithm to identify the amyloid fibril-forming segment of proteins. Using the same sets of sequences, a comparable prediction performance was obtained from this study to that from 3D profile method based on the physical atomic-level potential ROSETTADESIGN. The predicted results are consistent with experiments for several representative proteins associated with amyloidosis, and also agree with the idea that peptides that can form fibrils may have strong sequence signatures. Application of the residue-based statistical potentials is computationally more efficient than using atomic-level potentials and can be applied in whole proteome analysis to investigate the evolutionary pressure effect or forecast other latent diseases related to amyloid deposits.
The fibril prediction program is available at ftp://mdl.ipc.pku.edu.cn/pub/software/pre-amyl/.
Supplementary data are available at Bioinformatics online.
实验证据表明,某些短蛋白质片段比其他片段具有更强的淀粉样蛋白生成倾向。鉴定蛋白质的原纤维形成片段对于理解与蛋白质错误折叠相关的疾病以及寻找治疗策略的有利靶点至关重要。
在本研究中,我们利用酵母朊病毒蛋白中NNQQNY肽的微晶结构和基于残基的统计势来建立一种算法,以鉴定蛋白质的淀粉样原纤维形成片段。使用相同的序列集,本研究获得的预测性能与基于物理原子水平势ROSETTADESIGN的3D轮廓法相当。预测结果与几种与淀粉样变性相关的代表性蛋白质的实验结果一致,也与能够形成原纤维的肽可能具有强序列特征的观点相符。基于残基的统计势的应用在计算上比使用原子水平势更有效,并且可以应用于全蛋白质组分析,以研究进化压力效应或预测与淀粉样沉积物相关的其他潜在疾病。
原纤维预测程序可在ftp://mdl.ipc.pku.edu.cn/pub/software/pre-amyl/获取。
补充数据可在《生物信息学》在线获取。