Suppr超能文献

支持向量机参数优化对术后经皮冠状动脉介入治疗死亡率判别和校准的影响。

Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality.

作者信息

Matheny Michael E, Resnic Frederic S, Arora Nipun, Ohno-Machado Lucila

机构信息

Decision Systems Group, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.

出版信息

J Biomed Inform. 2007 Dec;40(6):688-97. doi: 10.1016/j.jbi.2007.05.008. Epub 2007 May 18.

Abstract

Support vector machines (SVM) have become popular among machine learning researchers, but their applications in biomedicine have been somewhat limited. A number of methods, such as grid search and evolutionary algorithms, have been utilized to optimize model parameters of SVMs. The sensitivity of the results to changes in optimization methods has not been investigated in the context of medical applications. In this study, radial-basis kernel SVM and polynomial kernel SVM mortality prediction models for percutaneous coronary interventions were optimized using (a) mean-squared error, (b) mean cross-entropy error, (c) the area under the receiver operating characteristic, and (d) the Hosmer-Lemeshow goodness-of-fit test (HL chi(2)). A threefold cross-validation inner and outer loop method was used to select the best models using the training data, and evaluations were based on previously unseen test data. The results were compared to those produced by logistic regression models optimized using the same indices. The choice of optimization parameters had a significant impact on performance in both SVM kernel types.

摘要

支持向量机(SVM)在机器学习研究人员中颇受欢迎,但其在生物医学中的应用却受到一定限制。人们已采用多种方法(如网格搜索和进化算法)来优化支持向量机的模型参数。在医学应用背景下,尚未对结果对优化方法变化的敏感性进行研究。在本研究中,使用以下方法对经皮冠状动脉介入治疗的径向基核支持向量机和多项式核支持向量机死亡率预测模型进行了优化:(a)均方误差,(b)平均交叉熵误差,(c)受试者工作特征曲线下面积,以及(d)Hosmer-Lemeshow拟合优度检验(HL chi(2))。采用三重交叉验证内循环和外循环方法,利用训练数据选择最佳模型,并基于之前未见过的测试数据进行评估。将结果与使用相同指标优化的逻辑回归模型的结果进行比较。优化参数的选择对两种支持向量机内核类型的性能均有显著影响。

相似文献

1
Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality.
J Biomed Inform. 2007 Dec;40(6):688-97. doi: 10.1016/j.jbi.2007.05.008. Epub 2007 May 18.
2
Discrimination and calibration of mortality risk prediction models in interventional cardiology.
J Biomed Inform. 2005 Oct;38(5):367-75. doi: 10.1016/j.jbi.2005.02.007. Epub 2005 Mar 26.
3
Predicting complications of percutaneous coronary intervention using a novel support vector method.
J Am Med Inform Assoc. 2013 Jul-Aug;20(4):778-86. doi: 10.1136/amiajnl-2012-001588. Epub 2013 Apr 18.
4
Probabilistic classification vector machines.
IEEE Trans Neural Netw. 2009 Jun;20(6):901-14. doi: 10.1109/TNN.2009.2014161. Epub 2009 Apr 24.
5
Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.
Artif Intell Med. 2011 Oct;53(2):83-95. doi: 10.1016/j.artmed.2011.07.003. Epub 2011 Aug 17.
7
[Study on application of SVM in prediction of coronary heart disease].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2013 Dec;30(6):1180-5.
8
Seminal quality prediction using data mining methods.
Technol Health Care. 2014;22(4):531-45. doi: 10.3233/THC-140816.

引用本文的文献

1
Accuracy of machine learning in predicting outcomes post-percutaneous coronary intervention: a systematic review.
AsiaIntervention. 2024 Sep 27;10(3):219-232. doi: 10.4244/AIJ-D-23-00023. eCollection 2024 Sep.
2
Prediction Model for Unfavorable Outcome in Spontaneous Intracerebral Hemorrhage Based on Machine Learning.
J Korean Neurosurg Soc. 2024 Jan;67(1):94-102. doi: 10.3340/jkns.2023.0118. Epub 2023 Sep 1.
4
A practical computerized decision support system for predicting the severity of Alzheimer's disease of an individual.
Expert Syst Appl. 2019 Sep 15;130:157-171. doi: 10.1016/j.eswa.2019.04.022. Epub 2019 Apr 10.
5
Application of Hybrid Functional Groups to Predict ATP Binding Proteins.
ISRN Comput Biol. 2014 Jan 8;2014:581245. doi: 10.1155/2014/581245.
6
Predicting complications of percutaneous coronary intervention using a novel support vector method.
J Am Med Inform Assoc. 2013 Jul-Aug;20(4):778-86. doi: 10.1136/amiajnl-2012-001588. Epub 2013 Apr 18.
7
Detection and identification of potential biomarkers of breast cancer.
J Cancer Res Clin Oncol. 2010 Aug;136(8):1243-54. doi: 10.1007/s00432-010-0775-1. Epub 2010 Mar 17.
8
Discovery and identification of potential biomarkers of papillary thyroid carcinoma.
Mol Cancer. 2009 Sep 28;8:79. doi: 10.1186/1476-4598-8-79.

本文引用的文献

2
Support vector machine learning model for the prediction of sentinel node status in patients with cutaneous melanoma.
Ann Surg Oncol. 2006 Aug;13(8):1113-22. doi: 10.1245/ASO.2006.03.019. Epub 2006 Jul 19.
3
Supervised feature ranking using a genetic algorithm optimized artificial neural network.
J Chem Inf Model. 2006 Jul-Aug;46(4):1604-14. doi: 10.1021/ci0600354.
4
Computational prediction of methylation status in human genomic sequences.
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10713-6. doi: 10.1073/pnas.0602949103. Epub 2006 Jul 3.
5
Risk scoring in perioperative and surgical intensive care patients: a review.
Curr Surg. 2006 May-Jun;63(3):226-36. doi: 10.1016/j.cursur.2006.02.005.
7
Machine learning in soil classification.
Neural Netw. 2006 Mar;19(2):186-95. doi: 10.1016/j.neunet.2006.01.005. Epub 2006 Mar 10.
8
Discrimination of outer membrane proteins using machine learning algorithms.
Proteins. 2006 Jun 1;63(4):1031-7. doi: 10.1002/prot.20929.
9
Discrimination and calibration of mortality risk prediction models in interventional cardiology.
J Biomed Inform. 2005 Oct;38(5):367-75. doi: 10.1016/j.jbi.2005.02.007. Epub 2005 Mar 26.
10
Gradient-based adaptation of general gaussian kernels.
Neural Comput. 2005 Oct;17(10):2099-105. doi: 10.1162/0899766054615635.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验