Suppr超能文献

通过贝叶斯体素标记进行肺结节检测。

Lung nodule detection via Bayesian voxel labeling.

作者信息

Mendonça Paulo R S, Bhotika Rahul, Zhao Fei, Miller James V

机构信息

GE Global Research, One Research Circle, Niskayuna, NY 12309, USA.

出版信息

Inf Process Med Imaging. 2007;20:134-46. doi: 10.1007/978-3-540-73273-0_12.

Abstract

This paper describes a system for detecting pulmonary nodules in CT images. It aims to label individual image voxels in accordance to one of a number of anatomical (pulmonary vessels or junctions), pathological (nodules), or spurious (noise) events. The approach is orthodoxly Bayesian, with particular care taken in the objective establishment of prior probabilities and the incorporation of relevant medical knowledge. We provide, under explicit modeling assumptions, closed-form expressions for all the probability distributions involved. The technique is applied to real data, and we present a discussion of its performance.

摘要

本文描述了一种用于在CT图像中检测肺结节的系统。它旨在根据多种解剖学(肺血管或结节)、病理学(结节)或伪像(噪声)事件之一对单个图像体素进行标记。该方法是正统的贝叶斯方法,在客观确定先验概率和纳入相关医学知识时格外小心。在明确的建模假设下,我们给出了所有相关概率分布的闭式表达式。该技术应用于实际数据,并对其性能进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验