Mendonça Paulo R S, Bhotika Rahul, Zhao Fei, Miller James V
GE Global Research, One Research Circle, Niskayuna, NY 12309, USA.
Inf Process Med Imaging. 2007;20:134-46. doi: 10.1007/978-3-540-73273-0_12.
This paper describes a system for detecting pulmonary nodules in CT images. It aims to label individual image voxels in accordance to one of a number of anatomical (pulmonary vessels or junctions), pathological (nodules), or spurious (noise) events. The approach is orthodoxly Bayesian, with particular care taken in the objective establishment of prior probabilities and the incorporation of relevant medical knowledge. We provide, under explicit modeling assumptions, closed-form expressions for all the probability distributions involved. The technique is applied to real data, and we present a discussion of its performance.
本文描述了一种用于在CT图像中检测肺结节的系统。它旨在根据多种解剖学(肺血管或结节)、病理学(结节)或伪像(噪声)事件之一对单个图像体素进行标记。该方法是正统的贝叶斯方法,在客观确定先验概率和纳入相关医学知识时格外小心。在明确的建模假设下,我们给出了所有相关概率分布的闭式表达式。该技术应用于实际数据,并对其性能进行了讨论。