Suppr超能文献

Hop2/Mnd1在Dmc1促进的同源配对的两个关键步骤中发挥作用。

Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing.

作者信息

Pezza Roberto J, Voloshin Oleg N, Vanevski Filip, Camerini-Otero R Daniel

机构信息

Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Genes Dev. 2007 Jul 15;21(14):1758-66. doi: 10.1101/gad.1562907.

Abstract

Meiotic recombination between homologous chromosomes ensures their proper segregation at the first division of meiosis and is the main force shaping genetic variation of genomes. The HOP2 and MND1 genes are essential for this recombination: Their disruption results in severe defects in homologous chromosome synapsis and an early-stage failure in meiotic recombination. The mouse Hop2 and Mnd1 proteins form a stable heterodimer (Hop2/Mnd1) that greatly enhances Dmc1-mediated strand invasion. In order to elucidate the mechanism by which Hop2/Mnd1 stimulates Dmc1, we identify several intermediate steps in the homologous pairing reaction promoted by Dmc1. We show that Hop2/Mnd1 greatly stimulates Dmc1 to promote synaptic complex formation on long duplex DNAs, a step previously revealed only for bacterial homologous recombinases. This synaptic alignment is a consequence of the ability of Hop2/Mnd1 to (1) stabilize Dmc1-single-stranded DNA (ssDNA) nucleoprotein complexes, and (2) facilitate the conjoining of DNA molecules through the capture of double-stranded DNA by the Dmc1-ssDNA nucleoprotein filament. To our knowledge, Hop2/Mnd1 is the first homologous recombinase accessory protein that acts on these two separate and critical steps in mammalian meiotic recombination.

摘要

同源染色体之间的减数分裂重组确保了它们在减数第一次分裂时的正确分离,并且是塑造基因组遗传变异的主要力量。HOP2和MND1基因对于这种重组至关重要:它们的破坏会导致同源染色体联会出现严重缺陷以及减数分裂重组早期失败。小鼠Hop2和Mnd1蛋白形成稳定的异源二聚体(Hop2/Mnd1),该异源二聚体极大地增强了Dmc1介导的链入侵。为了阐明Hop2/Mnd1刺激Dmc1的机制,我们确定了Dmc1促进的同源配对反应中的几个中间步骤。我们表明,Hop2/Mnd1极大地刺激Dmc1,以促进在长双链DNA上形成突触复合体,这是一个此前仅在细菌同源重组酶中发现的步骤。这种突触排列是Hop2/Mnd1具备以下能力的结果:(1)稳定Dmc1-单链DNA(ssDNA)核蛋白复合体;(2)通过Dmc1-ssDNA核蛋白细丝捕获双链DNA来促进DNA分子的连接。据我们所知,Hop2/Mnd1是第一个作用于哺乳动物减数分裂重组中这两个独立且关键步骤的同源重组酶辅助蛋白。

相似文献

1
Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing.
Genes Dev. 2007 Jul 15;21(14):1758-66. doi: 10.1101/gad.1562907.
2
Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase.
Genes Dev. 2007 Jul 15;21(14):1747-57. doi: 10.1101/gad.1563007.
3
Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing.
Nucleic Acids Res. 2014 Jan;42(2):906-17. doi: 10.1093/nar/gkt924. Epub 2013 Oct 22.
4
The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination.
Nat Struct Mol Biol. 2005 May;12(5):449-53. doi: 10.1038/nsmb923. Epub 2005 Apr 17.
7
Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation.
Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10572-7. doi: 10.1073/pnas.0404195101. Epub 2004 Jul 12.
8
Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast.
Mol Cell Biol. 2006 Apr;26(8):2913-23. doi: 10.1128/MCB.26.8.2913-2923.2006.
9
The dual role of HOP2 in mammalian meiotic homologous recombination.
Nucleic Acids Res. 2014 Feb;42(4):2346-57. doi: 10.1093/nar/gkt1234. Epub 2013 Dec 3.
10
Hop2-Mnd1 and Swi5-Sfr1 stimulate Dmc1 filament assembly using distinct mechanisms.
Nucleic Acids Res. 2023 Sep 8;51(16):8550-8562. doi: 10.1093/nar/gkad561.

引用本文的文献

2
Hop2-Mnd1 functions as a DNA sequence fidelity switch in Dmc1-mediated DNA recombination.
Nat Commun. 2024 Oct 27;15(1):9266. doi: 10.1038/s41467-024-53641-3.
4
Integrative Pan-Cancer Analysis Reveals the Oncogenic Role of MND1 and Validation of MND1's Role in Breast Cancer.
J Inflamm Res. 2024 Jul 17;17:4721-4746. doi: 10.2147/JIR.S458832. eCollection 2024.
7
Hop2-Mnd1 and Swi5-Sfr1 stimulate Dmc1 filament assembly using distinct mechanisms.
Nucleic Acids Res. 2023 Sep 8;51(16):8550-8562. doi: 10.1093/nar/gkad561.
8
Identification of a missense variant of MND1 in meiotic arrest and non-obstructive azoospermia.
J Hum Genet. 2023 Nov;68(11):729-735. doi: 10.1038/s10038-023-01172-y. Epub 2023 Jun 26.
9
MND1 enables homologous recombination in somatic cells primarily outside the context of replication.
Mol Oncol. 2023 Jul;17(7):1192-1211. doi: 10.1002/1878-0261.13448. Epub 2023 Jun 14.
10
The Hop2-Mnd1 Complex and Its Regulation of Homologous Recombination.
Biomolecules. 2023 Apr 10;13(4):662. doi: 10.3390/biom13040662.

本文引用的文献

1
Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase.
Genes Dev. 2007 Jul 15;21(14):1747-57. doi: 10.1101/gad.1563007.
2
A dominant, recombination-defective allele of Dmc1 causing male-specific sterility.
PLoS Biol. 2007 May;5(5):e105. doi: 10.1371/journal.pbio.0050105.
3
Stimulation of Dmc1-mediated DNA strand exchange by the human Rad54B protein.
Nucleic Acids Res. 2006;34(16):4429-37. doi: 10.1093/nar/gkl562. Epub 2006 Aug 31.
4
The Swi5-Sfr1 complex stimulates Rhp51/Rad51- and Dmc1-mediated DNA strand exchange in vitro.
Nat Struct Mol Biol. 2006 Sep;13(9):823-30. doi: 10.1038/nsmb1136. Epub 2006 Aug 20.
5
AtMND1 is required for homologous pairing during meiosis in Arabidopsis.
BMC Mol Biol. 2006 Jul 27;7:24. doi: 10.1186/1471-2199-7-24.
6
Clarifying the mechanics of DNA strand exchange in meiotic recombination.
Nature. 2006 Jul 13;442(7099):153-8. doi: 10.1038/nature04885.
8
Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex.
J Biol Chem. 2006 Jul 7;281(27):18426-34. doi: 10.1074/jbc.M601073200. Epub 2006 May 4.
9
Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast.
Mol Cell Biol. 2006 Apr;26(8):2913-23. doi: 10.1128/MCB.26.8.2913-2923.2006.
10
Atmnd1-delta1 is sensitive to gamma-irradiation and defective in meiotic DNA repair.
DNA Repair (Amst). 2006 Apr 8;5(4):455-64. doi: 10.1016/j.dnarep.2005.12.007. Epub 2006 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验