Hojamberdiev M, Kameshima Y, Nakajima A, Okada K, Kadirova Z
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8552, Japan.
J Hazard Mater. 2008 Mar 1;151(2-3):710-9. doi: 10.1016/j.jhazmat.2007.06.058. Epub 2007 Jun 20.
Three materials were prepared from paper sludge (PS) using different treatment processes and their sorption abilities for phosphate and methylene blue (MB) were determined. The samples were a powder sample prepared by heating PS in air (sample C), a pellet prepared by grinding, forming and heating PS in air (sample G) and a powder prepared by physical activation of PS in flowing wet nitrogen (sample A). The three samples were heated at 600-900 degrees C for 6h. On heating at 700-800 degrees C, the organic fibers, limestone (CaCO3), kaolinite (Al2Si2O5(OH)4) and talc (Mg3Si4O10(OH)2) in the original PS were converted to amorphous CaO-Al2O3-SiO2 (CAS) and talc in sample C, while CAS was formed in sample G and activated carbon, CAS and talc was formed in sample A. On heating at 900 degrees C the CAS converted to gehlenite (Ca2Al2SiO7) and anorthite (CaAl2Si2O8). The specific surface areas (SBET) of the three samples achieved maximum values of 23, 37 and 70 m2/g upon heating at 700, 600 and 600 degrees C, respectively. The SBET value of the activated sample A was distinctly lower than usually reported for activated carbon. The samples C, G and A achieved maximum phosphate sorption capacities of 2.04, 1.38 and 1.70 mmol/g, calculated from the Langmuir model, upon heating at 700, 700 and 800 degrees C, respectively. The maximum sorption capacity for phosphate in sample C is attributed to the sorption by CAS, namely, adsorption on the alumina component and precipitation as Ca-phosphates. The MB multifunctional sorption capacity of sample A was 0.11 mmol/g. The phosphate and MB sorption rates show better correlation with a pseudo-second order model than with other models.