Lewis Amanda L, Cao Hongzhi, Patel Silpa K, Diaz Sandra, Ryan Wesley, Carlin Aaron F, Thon Vireak, Lewis Warren G, Varki Ajit, Chen Xi, Nizet Victor
Glycobiology Research and Training Center, Department of Pediatrics, University of California, San diego, La Jolla, CA 92093-0687, USA.
J Biol Chem. 2007 Sep 21;282(38):27562-71. doi: 10.1074/jbc.M700340200. Epub 2007 Jul 23.
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.
B族链球菌(GBS)是新生儿败血症和脑膜炎的常见病因。GBS的一个主要毒力决定因素是其唾液酸(Sia)封端的荚膜多糖。最近,我们发现了GBS中荚膜Sia O-乙酰化的存在及其遗传基础。我们现在鉴定了一种GBS Sia O-乙酰酯酶,它可调节GBS表面O-乙酰化的程度。GBS Sia O-乙酰酯酶与GBS CMP-Sia合成酶协同作用,二者均为neuA基因编码的单一多肽的一部分。游离的9-O-乙酰基-N-乙酰神经氨酸(Neu5,9Ac(2))的NeuA脱O-乙酰化作用分别被N端GBS CMP-Sia合成酶结构域的底物CTP和辅因子Mg(2+)增强。相比之下,来自大肠杆菌K1的同源双功能NeuA酯酶不显示对辅因子的依赖性。进一步分析表明,在体外,GBS NeuA可通过两种交替的酶促途径发挥作用:Neu5,9Ac(2)的脱O-乙酰化,随后是Neu5Ac的CMP激活;或Neu5,9Ac(2)的激活,随后是CMP-Neu5,9Ac(2)的脱O-乙酰化。与体外酯酶测定结果一致,GBS neuA的基因缺失导致细胞内O-乙酰化Sias的积累,而GBS NeuA的过表达降低了细菌表面Sias的O-乙酰化。保守天冬酰胺残基301的定点诱变消除了酯酶活性,但保留了CMP-Sia合成酶活性,这通过仅表达N301A NeuA等位基因的GBS上荚膜多糖Sias的高O-乙酰化得以证明。这些研究证明了一种调节完整细菌中荚膜Sia O-乙酰化程度的新机制,并提供了一种操纵GBS O-乙酰化的遗传策略,以探索这种修饰在GBS发病机制和免疫原性中的作用。