Suppr超能文献

使用标准化均数差的Meta分析中的数据提取错误。

Data extraction errors in meta-analyses that use standardized mean differences.

作者信息

Gøtzsche Peter C, Hróbjartsson Asbjørn, Maric Katja, Tendal Britta

机构信息

Nordic Cochrane Centre, Rigshospitalet, Copenhagen Ø, Denmark.

出版信息

JAMA. 2007 Jul 25;298(4):430-7. doi: 10.1001/jama.298.4.430.

Abstract

CONTEXT

Meta-analysis of trials that have used different continuous or rating scales to record outcomes of a similar nature requires sophisticated data handling and data transformation to a uniform scale, the standardized mean difference (SMD). It is not known how reliable such meta-analyses are.

OBJECTIVE

To study whether SMDs in meta-analyses are accurate.

DATA SOURCES

Systematic review of meta-analyses published in 2004 that reported a result as an SMD, with no language restrictions. Two trials were randomly selected from each meta-analysis. We attempted to replicate the results in each meta-analysis by independently calculating SMD using Hedges adjusted g.

DATA EXTRACTION

Our primary outcome was the proportion of meta-analyses for which our result differed from that of the authors by 0.1 or more, either for the point estimate or for its confidence interval, for at least 1 of the 2 selected trials. We chose 0.1 as cut point because many commonly used treatments have an effect of 0.1 to 0.5, compared with placebo.

RESULTS

Of the 27 meta-analyses included in this study, we could not replicate the result for at least 1 of the 2 trials within 0.1 in 10 of the meta-analyses (37%), and in 4 cases, the discrepancy was 0.6 or more for the point estimate. Common problems were erroneous number of patients, means, standard deviations, and sign for the effect estimate. In total, 17 meta-analyses (63%) had errors for at least 1 of the 2 trials examined. For the 10 meta-analyses with errors of at least 0.1, we checked the data from all the trials and conducted our own meta-analysis, using the authors' methods. Seven of these 10 meta-analyses were erroneous (70%); 1 was subsequently retracted, and in 2 a significant difference disappeared or appeared.

CONCLUSIONS

The high proportion of meta-analyses based on SMDs that show errors indicates that although the statistical process is ostensibly simple, data extraction is particularly liable to errors that can negate or even reverse the findings of the study. This has implications for researchers and implies that all readers, including journal reviewers and policy makers, should approach such meta-analyses with caution.

摘要

背景

对使用不同连续或评分量表记录相似性质结果的试验进行荟萃分析,需要复杂的数据处理以及将数据转换为统一量表,即标准化均数差(SMD)。目前尚不清楚此类荟萃分析的可靠性如何。

目的

研究荟萃分析中的标准化均数差是否准确。

数据来源

对2004年发表的以标准化均数差报告结果的荟萃分析进行系统评价,无语言限制。从每项荟萃分析中随机选取两项试验。我们试图通过使用赫奇斯调整后的g值独立计算标准化均数差来复制每项荟萃分析的结果。

数据提取

我们的主要结局是在两项所选试验中,至少有一项试验的点估计值或其置信区间与作者的结果相差0.1或更多的荟萃分析所占的比例。我们选择0.1作为切点,因为与安慰剂相比,许多常用治疗的效应为0.1至0.5。

结果

在本研究纳入的27项荟萃分析中,10项荟萃分析(37%)中我们无法在0.1范围内复制两项试验中至少一项试验的结果,在4例中,点估计值的差异为0.6或更大。常见问题包括患者数量、均值、标准差错误以及效应估计值的符号错误。总共17项荟萃分析(63%)在两项所检查试验中至少有一项存在错误。对于10项误差至少为0.1的荟萃分析,我们检查了所有试验的数据,并使用作者的方法进行了我们自己的荟萃分析。这10项荟萃分析中有7项存在错误(70%);1项随后被撤回,2项中显著差异消失或出现。

结论

基于标准化均数差的荟萃分析中出现错误的比例很高,这表明尽管统计过程表面上很简单,但数据提取特别容易出错,这些错误可能会否定甚至扭转研究结果。这对研究人员有影响,意味着所有读者,包括期刊审稿人和政策制定者,都应谨慎对待此类荟萃分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验