Wang X, Carré W, Saxton A M, Cogburn L A
Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA.
Cytogenet Genome Res. 2007;117(1-4):174-88. doi: 10.1159/000103178.
Both thyroid hormone (T3) and growth hormone (GH) are important regulators of somatic growth in birds and mammals. Although T3-mediated gene transcription is well known, the molecular basis of T3 interaction with GH on growth and development of birds remains unknown. In earlier studies, we discovered that exogenous GH alone increased accumulation of visceral fat in young chickens, while the combination of GH injections and dietary T3 worked synergistically to deplete body fat. In the present study, cDNA microarray and quantitative RT-PCR analyses enabled us to examine hepatic gene expression in young chickens after chronic manipulation of thyroid status and GH injection alone or in combination with T3. Thyroid status modulates expression of common and unique sets of genes involved in a wide range of molecular functions (i.e., energy metabolism, storage and transport, signal transduction, protein turnover and drug detoxification). Hepatic expression of 35 genes was altered by hypothyroidism (e.g., ADFP, ANGPTL3, GSTalpha, CAT, PPARG, HMGCL, GHR, IGF1, STAT3, THRSPalpha), whereas hyperthyroidism affected expression of another cluster of 13 genes (e.g., IGFBP1, KHK, LDHB, BAIA2L1, SULT1B, TRIAD3). Several genes were identified which have not been previously ascribed as T3 responsive (e.g., DEFB9, EPS8L2, ARHGAP1, LASS2, INHBC). Exogenous GH altered expression of 17 genes (e.g., CCAR1, CYP2C45, GYS2, ENOB, HK1, FABP1, SQLE, SOCS2, UPG2). The T3+GH treatment depleted the greatest amount of body fat, where 34 differentially expressed genes were unique to this group (e.g., C/EBP, CDC42EP1, SYDE2, PCK2, PIK4CA, TH1L, GPT2, BHMT). The marked reduction in body fat brought about by the T3+GH synergism could involve modulation of hormone signaling via altered activity of the Ras superfamily of molecular switches, which control diverse biological processes. In conclusion, this study provides the first global analysis of endocrine (T3 and GH) regulation of hepatic gene transcription in the chicken.
甲状腺激素(T3)和生长激素(GH)都是鸟类和哺乳动物体细胞生长的重要调节因子。虽然T3介导的基因转录已广为人知,但T3与GH在鸟类生长发育过程中相互作用的分子基础仍不清楚。在早期研究中,我们发现单独使用外源性GH会增加幼鸡内脏脂肪的积累,而注射GH与日粮添加T3联合使用则具有协同作用,可消耗体脂。在本研究中,通过cDNA微阵列和定量RT-PCR分析,我们能够检测在单独或与T3联合长期调控甲状腺状态和注射GH后幼鸡肝脏基因的表达。甲状腺状态可调节参与广泛分子功能(即能量代谢(能量代谢、储存和运输、信号转导、蛋白质周转和药物解毒))的一组共同和独特基因的表达。甲状腺功能减退会改变35个基因的肝脏表达(例如,ADFP、ANGPTL3、GSTalpha、CAT、PPARG、HMGCL、GHR、IGF1、STAT3、THRSPalpha),而甲状腺功能亢进则影响另一组13个基因的表达(例如,IGFBP1、KHK、LDHB、BAIA2L1、SULT1B、TRIAD3)。我们鉴定出了几个以前未被认为是T3反应性的基因(例如,DEFB9、EPS8L2、ARHGAP1、LASS2、INHBC)。外源性GH改变了17个基因的表达(例如,CCAR1、CYP2C45、GYS2、ENOB、HK1、FABP1、SQLE、SOCS2、UPG2)。T3+GH处理消耗的体脂量最大,该组有34个差异表达基因是其特有的(例如,C/EBP、CDC42EP1、SYDE2、PCK2、PIK4CA、TH1L、GPT2、BHMT)。T3+GH协同作用导致的体脂显著减少可能涉及通过改变控制多种生物学过程的分子开关Ras超家族的活性来调节激素信号传导。总之,本研究首次对鸡肝脏基因转录的内分泌(T3和GH)调节进行了全面分析。