Suppr超能文献

自由随机列维矩阵和维格纳 - 列维矩阵。

Free random Lévy and Wigner-Lévy matrices.

作者信息

Burda Zdzisław, Jurkiewicz Jerzy, Nowak Maciej A, Papp Gabor, Zahed Ismail

机构信息

Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-059 Kraków, Reymonta 4, Poland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051126. doi: 10.1103/PhysRevE.75.051126. Epub 2007 May 30.

Abstract

We compare eigenvalue densities of Wigner random matrices whose elements are independent identically distributed random numbers with a Lévy distribution and maximally random matrices with a rotationally invariant measure exhibiting a power law spectrum given by stable laws of free random variables. We compute the eigenvalue density of Wigner-Lévy matrices using (and correcting) the method by Bouchaud and Cizeau, and of free random Lévy (FRL) rotationally invariant matrices by adapting results of free probability calculus. We compare the two types of eigenvalue spectra. Both ensembles are spectrally stable with respect to the matrix addition. The discussed ensemble of FRL matrices is maximally random in the sense that it maximizes Shannon's entropy. We find a perfect agreement between the numerically sampled spectra and the analytical results already for matrices of dimension N=100 . The numerical spectra show very weak dependence on the matrix size N as can be noticed by comparing spectra for N=400 . After a pertinent rescaling, spectra of Wigner-Lévy matrices and of symmetric FRL matrices have the same tail behavior. As we discuss towards the end of the paper the correlations of large eigenvalues in the two ensembles are, however, different. We illustrate the relation between the two types of stability and show that the addition of many randomly rotated Wigner-Lévy matrices leads by a matrix central limit theorem to FRL spectra, providing an explicit realization of the maximal randomness principle.

摘要

我们比较了维格纳随机矩阵的特征值密度,其元素是具有 Lévy 分布的独立同分布随机数,以及具有旋转不变测度的最大随机矩阵,该矩阵呈现出由自由随机变量的稳定定律给出的幂律谱。我们使用(并修正)Bouchaud 和 Cizeau 的方法计算维格纳 - Lévy 矩阵的特征值密度,并通过改编自由概率计算的结果来计算自由随机 Lévy(FRL)旋转不变矩阵的特征值密度。我们比较了这两种类型的特征值谱。这两个系综对于矩阵加法在谱上都是稳定的。所讨论的 FRL 矩阵系综在最大化香农熵的意义上是最大随机的。我们发现,对于维度(N = 100)的矩阵,数值采样谱与解析结果已经完全吻合。通过比较(N = 400)时的谱可以注意到,数值谱对矩阵大小(N)的依赖性非常弱。经过适当的重新缩放后,维格纳 - Lévy 矩阵和对称 FRL 矩阵的谱具有相同的尾部行为。然而,正如我们在论文结尾所讨论的,这两个系综中大特征值的相关性是不同的。我们说明了这两种稳定性之间的关系,并表明通过矩阵中心极限定理,添加许多随机旋转的维格纳 - Lévy 矩阵会导致 FRL 谱,从而提供了最大随机性原理的明确实现。

相似文献

1
Free random Lévy and Wigner-Lévy matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051126. doi: 10.1103/PhysRevE.75.051126. Epub 2007 May 30.
2
Commutative law for products of infinitely large isotropic random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022107. doi: 10.1103/PhysRevE.88.022107. Epub 2013 Aug 7.
3
Free random Lévy matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 1):021106. doi: 10.1103/PhysRevE.65.021106. Epub 2002 Jan 17.
4
Random matrix ensembles from nonextensive entropy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066131. doi: 10.1103/PhysRevE.69.066131. Epub 2004 Jun 17.
5
Extreme value statistics of eigenvalues of Gaussian random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041108. doi: 10.1103/PhysRevE.77.041108. Epub 2008 Apr 10.
7
Weak commutation relations and eigenvalue statistics for products of rectangular random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032106. doi: 10.1103/PhysRevE.89.032106. Epub 2014 Mar 10.
8
Spectral relations between products and powers of isotropic random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061137. doi: 10.1103/PhysRevE.86.061137. Epub 2012 Dec 27.
9
Spectral statistics and dynamics of Lévy matrices.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt A):3580-8. doi: 10.1103/physreve.60.3580.
10
Large deviations of extreme eigenvalues of random matrices.
Phys Rev Lett. 2006 Oct 20;97(16):160201. doi: 10.1103/PhysRevLett.97.160201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验