Li Jinhong, Shi Xiaoying, Wang Lijuan, Liu Fei
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, People's Republic of China.
J Colloid Interface Sci. 2007 Nov 1;315(1):230-6. doi: 10.1016/j.jcis.2007.06.065. Epub 2007 Aug 8.
A new approach is presented for preparing biomorphological mesoporous TiO2 templated by mimicking bamboo inner shell membrane via supercritical CO2 (SCCO2) transportation through titanium tetrabutyloxide (TTBO). The analysis of wide-angle X-ray powder diffraction (XRD) showed the prepared TiO2 in phase of anatase, and the small-angle XRD revealed the presence of mesopores without periodicity. The product exhibited the shape of crinkled films and extended in two dimensions up to centimeters. The electron microscopic observation showed that the TiO2 films were around 200 nm in thickness, and across the films there were numerous round or ellipse-shaped mesopores, being 10-50 nm in diameter, which were formed by the close packing of TiO2 particles. High-resolution transmission electron microscope (HRTEM) displayed that the single TiO2 particle size was about 12.5 nm. The UV-vis absorption spectrum was transparent in the wavelength of 320-350 nm for suspensions of the prepared mesoporous TiO2 in ethanol at the concentration of 5.0 mg/l. The mesoporous TiO2 prepared with the aid of SCCO2 exhibited an obvious blue shift compared with the TiO2 prepared by sol-gel infiltration. The possible mechanism for the formation of the mesoporous TiO2 is summarized into a biomimetic mineralization pathway. First, TTBO was transported to the membrane surface via SCCO2, and then condensed. Hydrolysis reactions between the functional groups of organic membrane and TTBO took place to form the nuclear TiO2, and the TiO2 seeds grew around the organic membrane into TiO2 mesoporous materials. The approach provides a low-cost and efficient route for the production of ceramics nanomaterials with unique structural features, which may have potential application in designing UV-selective shielding devices [S. Zhao, X.H. Wang, S.B. Xin, Q. Jiang, X.P. Liang, Rare Metal Mater. Eng. 35 (2006) 508-510].
提出了一种新方法,通过超临界CO₂(SCCO₂)穿过四丁基氧化钛(TTBO)来模拟竹内膜制备生物形态介孔TiO₂模板。广角X射线粉末衍射(XRD)分析表明,制备的TiO₂为锐钛矿相,小角XRD显示存在无周期性的介孔。产物呈现出褶皱薄膜的形状,在二维方向上延伸达厘米级。电子显微镜观察表明,TiO₂薄膜厚度约为200nm,薄膜上有许多直径为10 - 50nm的圆形或椭圆形介孔,这些介孔由TiO₂颗粒紧密堆积形成。高分辨率透射电子显微镜(HRTEM)显示单个TiO₂颗粒尺寸约为12.5nm。对于浓度为5.0mg/l的乙醇中制备的介孔TiO₂悬浮液,紫外可见吸收光谱在320 - 350nm波长范围内是透明的。与通过溶胶 - 凝胶浸渍法制备的TiO₂相比,并借助SCCO₂制备的介孔TiO₂表现出明显的蓝移。介孔TiO₂形成的可能机制总结为仿生矿化途径。首先,TTBO通过SCCO₂传输到膜表面,然后冷凝。有机膜官能团与TTBO之间发生水解反应形成TiO₂核,TiO₂晶种围绕有机膜生长成TiO₂介孔材料。该方法为生产具有独特结构特征的陶瓷纳米材料提供了一种低成本且高效的途径,这可能在设计紫外选择性屏蔽装置方面具有潜在应用[S. Zhao, X.H. Wang, S.B. Xin, Q. Jiang, X.P. Liang, Rare Metal Mater. Eng. 35 (2006) 508 - 510]。