Suppr超能文献

Online learning of objects in a biologically motivated visual architecture.

作者信息

Wersing Heiko, Kirstein Stephan, Götting Michael, Brandl Holger, Dunn Mark, Mikhailova Inna, Goerick Christian, Steil Jochen, Ritter Helge, Körner Edgar

机构信息

Honda Research Institute Europe GmbH, Carl-Legien-Street 30, 63073 Offenbach/Main, Germany.

出版信息

Int J Neural Syst. 2007 Aug;17(4):219-30. doi: 10.1142/S0129065707001081.

Abstract

We present a biologically motivated architecture for object recognition that is capable of online learning of several objects based on interaction with a human teacher. The system combines biological principles such as appearance-based representation in topographical feature detection hierarchies and context-driven transfer between different levels of object memory. Training can be performed in an unconstrained environment by presenting objects in front of a stereo camera system and labeling them by speech input. The learning is fully online and thus avoids an artificial separation of the interaction into training and test phases. We demonstrate the performance on a challenging ensemble of 50 objects.

摘要

相似文献

1
Online learning of objects in a biologically motivated visual architecture.
Int J Neural Syst. 2007 Aug;17(4):219-30. doi: 10.1142/S0129065707001081.
2
A biologically motivated visual memory architecture for online learning of objects.
Neural Netw. 2008 Jan;21(1):65-77. doi: 10.1016/j.neunet.2007.10.005. Epub 2007 Nov 23.
3
Adaptive object recognition model using incremental feature representation and hierarchical classification.
Neural Netw. 2012 Jan;25(1):130-40. doi: 10.1016/j.neunet.2011.06.020. Epub 2011 Jul 7.
4
Computational object recognition: a biologically motivated approach.
Biol Cybern. 2009 Jan;100(1):59-79. doi: 10.1007/s00422-008-0281-6. Epub 2008 Dec 17.
5
Learning optimized features for hierarchical models of invariant object recognition.
Neural Comput. 2003 Jul;15(7):1559-88. doi: 10.1162/089976603321891800.
6
Visual recognition and inference using dynamic overcomplete sparse learning.
Neural Comput. 2007 Sep;19(9):2301-52. doi: 10.1162/neco.2007.19.9.2301.
7
Invariant object recognition with trace learning and multiple stimuli present during training.
Network. 2007 Jun;18(2):161-87. doi: 10.1080/09548980701556055.
8
Learning to recognize objects on the fly: a neurally based dynamic field approach.
Neural Netw. 2008 May;21(4):562-76. doi: 10.1016/j.neunet.2008.03.007. Epub 2008 Apr 27.
10
Learning invariant object recognition in the visual system with continuous transformations.
Biol Cybern. 2006 Feb;94(2):128-42. doi: 10.1007/s00422-005-0030-z. Epub 2005 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验