Parker Jared B, Bianchet Mario A, Krosky Daniel J, Friedman Joshua I, Amzel L Mario, Stivers James T
Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical School, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
Nature. 2007 Sep 27;449(7161):433-7. doi: 10.1038/nature06131. Epub 2007 Aug 19.
The enzyme uracil DNA glycosylase (UNG) excises unwanted uracil bases in the genome using an extrahelical base recognition mechanism. Efficient removal of uracil is essential for prevention of C-to-T transition mutations arising from cytosine deamination, cytotoxic UA pairs arising from incorporation of dUTP in DNA, and for increasing immunoglobulin gene diversity during the acquired immune response. A central event in all of these UNG-mediated processes is the singling out of rare UA or UG base pairs in a background of approximately 10(9) TA or CG base pairs in the human genome. Here we establish for the human and Escherichia coli enzymes that discrimination of thymine and uracil is initiated by thermally induced opening of TA and U*A base pairs and not by active participation of the enzyme. Thus, base-pair dynamics has a critical role in the genome-wide search for uracil, and may be involved in initial damage recognition by other DNA repair glycosylases.
尿嘧啶DNA糖基化酶(UNG)通过一种螺旋外碱基识别机制切除基因组中不需要的尿嘧啶碱基。有效去除尿嘧啶对于预防因胞嘧啶脱氨基产生的C到T转换突变、因dUTP掺入DNA而产生的细胞毒性UA碱基对以及在获得性免疫反应期间增加免疫球蛋白基因多样性至关重要。在所有这些UNG介导的过程中,一个核心事件是在人类基因组中大约10^9个TA或CG碱基对的背景中挑选出罕见的UA或UG碱基对。在这里,我们针对人类和大肠杆菌的酶确定,胸腺嘧啶和尿嘧啶的区分是由热诱导的TA和U*A碱基对的打开引发的,而不是由酶的主动参与。因此,碱基对动力学在全基因组范围内寻找尿嘧啶的过程中起着关键作用,并且可能参与其他DNA修复糖基化酶的初始损伤识别。