Suppr超能文献

强直性肌营养不良的基因表达分析:DM1和DM2中共同分子致病途径的指征

Gene expression analysis in myotonic dystrophy: indications for a common molecular pathogenic pathway in DM1 and DM2.

作者信息

Botta Annalisa, Vallo Laura, Rinaldi Fabrizio, Bonifazi Emanuela, Amati Francesca, Biancolella Michela, Gambardella Stefano, Mancinelli Enzo, Angelini Corrado, Meola Giovanni, Novelli Giuseppe

机构信息

Department of Biopathology, Tor Vergata University of Rome, Rome, Italy.

出版信息

Gene Expr. 2007;13(6):339-51. doi: 10.3727/000000006781510705.

Abstract

An RNA gain-of-function of expanded transcripts is the most accredited molecular mechanism for myotonic dystrophy type 1 (DM1) and 2 (DM2). To disclose molecular parallels and divergences in pathogenesis of both disorders, we compared the expression profile of muscle biopsies from DM1 and DM2 patients to controls. DM muscle tissues showed a reduction in the major skeletal muscle chloride channel (CLCN1) and transcription factor Sp1 transcript levels and an abnormal processing of the CLCN1 and insulin receptor (IR) pre-mRNAs. No essential differences were observed in the muscle blind-like gene (MBNL1) and CUG binding protein 1 (CUGBP1) transcript levels as well as in the splicing pattern of the myotubularin-related 1 (MTMR1) gene. Macroarray analysis of 96 neuroscience-related genes revealed a considerable similar expression profile between the DM samples, reflective of a common muscle pathology origin. Using a twofold threshold, we found six misregulated genes important in calcium and potassium metabolism and in mitochondrial functions. Our results indicate that the DM1 and DM2 overlapping clinical phenotypes may derive from a common trans acting mechanism that traps and influences shared genes and proteins. An RNA gain-of-function of expanded transcripts is the most accredited molecular mechanism for myotonic dystrophy type 1 (DM1) and 2 (DM2). To disclose molecular parallels and divergences in pathogenesis of both disorders, we compared the expression profile of muscle biopsies from DM1 and DM2 patients to controls. DM muscle tissues showed a reduction in the major skeletal muscle chloride channel (CLCN1) and transcription factor Sp1 transcript levels and an abnormal processing of the CLCN1 and insulin receptor (IR) pre-mRNAs. No essential differences were observed in the muscle blind-like gene (MBNL1) and CUG binding protein 1 (CUGBP1) transcript levels as well as in the splicing pattern of the myotubularin-related 1 (MTMR1) gene. Macroarray analysis of 96 neuroscience-related genes revealed a considerable similar expression profile between the DM samples, reflective of a common muscle pathology origin. Using a twofold threshold, we found six misregulated genes important in calcium and potassium metabolism and in mitochondrial functions. Our results indicate that the DM1 and DM2 overlapping clinical phenotypes may derive from a common trans acting mechanism that traps and influences shared genes and proteins.

摘要

转录本扩增的RNA功能获得是1型强直性肌营养不良(DM1)和2型强直性肌营养不良(DM2)最被认可的分子机制。为了揭示这两种疾病发病机制中的分子相似性和差异,我们将DM1和DM2患者肌肉活检的表达谱与对照组进行了比较。DM肌肉组织显示主要骨骼肌氯通道(CLCN1)和转录因子Sp1的转录水平降低,以及CLCN1和胰岛素受体(IR)前体mRNA的加工异常。在肌肉盲样基因(MBNL1)和CUG结合蛋白1(CUGBP1)的转录水平以及与肌管素相关1(MTMR1)基因的剪接模式方面未观察到本质差异。对96个神经科学相关基因的宏阵列分析显示,DM样本之间的表达谱相当相似,这反映了共同的肌肉病理起源。使用两倍阈值,我们发现了六个在钙和钾代谢以及线粒体功能方面失调的重要基因。我们的结果表明,DM1和DM2重叠的临床表型可能源于一种共同的反式作用机制,该机制捕获并影响共享的基因和蛋白质。转录本扩增的RNA功能获得是1型强直性肌营养不良(DM1)和2型强直性肌营养不良(DM2)最被认可的分子机制。为了揭示这两种疾病发病机制中的分子相似性和差异,我们将DM1和DM2患者肌肉活检的表达谱与对照组进行了比较。DM肌肉组织显示主要骨骼肌氯通道(CLCN1)和转录因子Sp1的转录水平降低,以及CLCN1和胰岛素受体(IR)前体mRNA的加工异常。在肌肉盲样基因(MBNL1)和CUG结合蛋白1(CUGBP1)的转录水平以及与肌管素相关1(MTMR1)基因的剪接模式方面未观察到本质差异。对96个神经科学相关基因的宏阵列分析显示,DM样本之间的表达谱相当相似,这反映了共同的肌肉病理起源。使用两倍阈值,我们发现了六个在钙和钾代谢以及线粒体功能方面失调的重要基因。我们的结果表明,DM1和DM2重叠的临床表型可能源于一种共同的反式作用机制,该机制捕获并影响共享的基因和蛋白质。

相似文献

3
Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2.
PLoS One. 2013 Dec 20;8(12):e83777. doi: 10.1371/journal.pone.0083777. eCollection 2013.
4
Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells.
Hum Mol Genet. 2002 Sep 15;11(19):2297-307. doi: 10.1093/hmg/11.19.2297.
6
Myotonic dystrophy: emerging mechanisms for DM1 and DM2.
Biochim Biophys Acta. 2007 Feb;1772(2):195-204. doi: 10.1016/j.bbadis.2006.05.013. Epub 2006 Jun 20.
7
Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel.
Hum Mol Genet. 2012 Mar 15;21(6):1312-24. doi: 10.1093/hmg/ddr568. Epub 2011 Dec 2.
8
Altered expression and splicing of Ca(2+) metabolism genes in myotonic dystrophies DM1 and DM2.
Neuropathol Appl Neurobiol. 2013 Jun;39(4):390-405. doi: 10.1111/j.1365-2990.2012.01289.x.
9
Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes.
JCI Insight. 2019 Mar 21;4(6). doi: 10.1172/jci.insight.122686.

引用本文的文献

1
The polyG diseases: a new disease entity.
Acta Neuropathol Commun. 2022 May 31;10(1):79. doi: 10.1186/s40478-022-01383-y.
3
Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies.
Crit Rev Biochem Mol Biol. 2021 Feb;56(1):31-53. doi: 10.1080/10409238.2020.1841726. Epub 2020 Nov 10.
4
TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease.
Prog Retin Eye Res. 2021 Mar;81:100883. doi: 10.1016/j.preteyeres.2020.100883. Epub 2020 Jul 28.
5
RNA toxicity in non-coding repeat expansion disorders.
EMBO J. 2020 Jan 2;39(1):e101112. doi: 10.15252/embj.2018101112. Epub 2019 Nov 13.
6
Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing.
Physiol Rev. 2018 Jul 1;98(3):1205-1240. doi: 10.1152/physrev.00046.2017.
7
(CCUG) RNA toxicity in a model of myotonic dystrophy type 2 (DM2) activates apoptosis.
Dis Model Mech. 2017 Aug 1;10(8):993-1003. doi: 10.1242/dmm.026179. Epub 2017 Jun 16.
8
10
Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2.
PLoS One. 2013 Dec 20;8(12):e83777. doi: 10.1371/journal.pone.0083777. eCollection 2013.

本文引用的文献

1
Muscle chloride channel dysfunction in two mouse models of myotonic dystrophy.
J Gen Physiol. 2007 Jan;129(1):79-94. doi: 10.1085/jgp.200609635. Epub 2006 Dec 11.
2
RNA-dominant diseases.
Hum Mol Genet. 2006 Oct 15;15 Spec No 2:R162-9. doi: 10.1093/hmg/ddl181.
4
Effect of the [CCTG]n repeat expansion on ZNF9 expression in myotonic dystrophy type II (DM2).
Biochim Biophys Acta. 2006 Mar;1762(3):329-34. doi: 10.1016/j.bbadis.2005.11.004. Epub 2005 Dec 6.
6
Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy.
Hum Mol Genet. 2005 Jun 1;14(11):1539-47. doi: 10.1093/hmg/ddi162. Epub 2005 Apr 20.
7
On the utility of pooling biological samples in microarray experiments.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4252-7. doi: 10.1073/pnas.0500607102. Epub 2005 Mar 8.
8
RNA pathogenesis of the myotonic dystrophies.
Neuromuscul Disord. 2005 Jan;15(1):5-16. doi: 10.1016/j.nmd.2004.09.012. Epub 2004 Nov 26.
9
Myotonic dystrophy type 2 and related myotonic disorders.
J Neurol. 2004 Oct;251(10):1173-82. doi: 10.1007/s00415-004-0590-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验