Tan Kah Poh, Yang Mingdong, Ito Shinya
Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada.
Mol Pharmacol. 2007 Nov;72(5):1380-90. doi: 10.1124/mol.107.039370. Epub 2007 Aug 27.
Oxidative stress, causing necrotic and apoptotic cell death, is associated with bile acid toxicity. Using liver (HepG2, Hepa1c1c7, and primary human hepatocytes) and intestinal (C2bbe1, a Caco-2 subclone) cells, we demonstrated that toxic bile acids, such as lithocholic acid (LCA) and chenodeoxycholic acid, induced the nuclear factor (erythroid-2 like) factor 2 (Nrf2) target genes, especially the rate-limiting enzyme in glutathione (GSH) biosynthesis [glutamate cysteine ligase modulatory subunit (GCLM) and glutamate cysteine ligase catalytic subunit (GCLC)] and thioredoxin reductase 1. Nrf2 activation and induction of Nrf2 target genes were also evident in vivo in the liver of CD-1 mice treated 7 to 8 h or 4 days with LCA. Silencing of Nrf2 via small-interfering RNA suppressed basal and bile acid-induced mRNA levels of the above-mentioned genes. Consistent with this, overexpression of Nrf2 enhanced, but dominant-negative Nrf2 attenuated, Nrf2 target gene induction by bile acids. The activation of Nrf2-antioxidant responsive element (ARE) transcription machinery by bile acids was confirmed by increased nuclear accumulation of Nrf2, enhanced ARE-reporter activity, and increased Nrf2 binding to ARE. It is noteworthy that Nrf2 silencing increased cell susceptibility to LCA toxicity, as evidenced by reduced cell viability and increased necrosis and apoptosis. Concomitant with GCLC/GCLM induction, cellular GSH was significantly increased in bile acid-treated cells. Cotreatment with N-acetyl-l-cysteine, a GSH precursor, ameliorated LCA toxicity, whereas cotreatment with buthionine sulfoximine, a GSH synthesis blocker, exacerbated it. In summary, this study provides molecular evidence linking bile acid toxicity to oxidative stress. Nrf2 is centrally involved in counteracting such oxidative stress by enhancing adaptive antioxidative response, particularly GSH biosynthesis, and hence cell survival.
氧化应激可导致坏死性和凋亡性细胞死亡,与胆汁酸毒性相关。我们使用肝脏(HepG2、Hepa1c1c7和原代人肝细胞)和肠道(C2bbe1,一种Caco-2亚克隆)细胞,证明了有毒胆汁酸,如石胆酸(LCA)和鹅去氧胆酸,可诱导核因子(红细胞2样)因子2(Nrf2)靶基因,特别是谷胱甘肽(GSH)生物合成中的限速酶[谷氨酸半胱氨酸连接酶调节亚基(GCLM)和谷氨酸半胱氨酸连接酶催化亚基(GCLC)]以及硫氧还蛋白还原酶1。在用LCA处理7至8小时或4天的CD-1小鼠肝脏中,Nrf2激活和Nrf2靶基因的诱导在体内也很明显。通过小干扰RNA沉默Nrf2可抑制上述基因的基础水平和胆汁酸诱导的mRNA水平。与此一致,Nrf2的过表达增强了胆汁酸对Nrf2靶基因的诱导,但显性负性Nrf2则减弱了这种诱导。胆汁酸对Nrf2-抗氧化反应元件(ARE)转录机制的激活通过Nrf2核积累增加、ARE报告基因活性增强以及Nrf2与ARE结合增加得到证实。值得注意的是,Nrf2沉默增加了细胞对LCA毒性的敏感性,细胞活力降低以及坏死和凋亡增加证明了这一点。与GCLC/GCLM诱导同时发生的是,胆汁酸处理的细胞中细胞内GSH显著增加。用GSH前体N-乙酰-L-半胱氨酸共同处理可改善LCA毒性,而用GSH合成阻滞剂丁硫氨酸亚砜胺共同处理则会加剧毒性。总之,本研究提供了将胆汁酸毒性与氧化应激联系起来的分子证据。Nrf2通过增强适应性抗氧化反应,特别是GSH生物合成,从而在对抗这种氧化应激以及细胞存活中发挥核心作用。