Suppr超能文献

Null-balance transducer for isometric force measurements and length control of single heart cells.

作者信息

Luo C H, Tung L

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205.

出版信息

IEEE Trans Biomed Eng. 1991 Dec;38(12):1165-74. doi: 10.1109/10.137282.

Abstract

Recently, an ultrasensitive, optical-fiber-based force transducer was developed to measure the microscopic force of contraction of single heart cells. Since force in cardiac muscle is length and velocity dependent, it is desirable to maintain a constant (isometric) cell length. The original design permits approximately 1% shortening of cell length to occur during twitch contractions. The shortening can be reduced significantly by adding a piezoelectric bimorph actuator and closed-loop control, as described in this paper. As a result, the effective stiffness of the transducer can be increased by a factor of about 100, and cell shortening reduced to approximately 0.01%. For the force probes typically used, this is equivalent to a movement of less than 20 nm for a typical value of 100 nN peak cell force in single frog ventricular cells. The gain in stiffness is obtained without sacrificing sensitivity, although at the expense of frequency response. The new design also permits control of cell length and is applicable to studies of the mechanical stiffness of cardiac cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验