Suppr超能文献

一种用于支持向量域描述的路径算法及其在医学成像中的应用。

A path algorithm for the support vector domain description and its application to medical imaging.

作者信息

Sjöstrand Karl, Hansen Michael Sass, Larsson Henrik B, Larsen Rasmus

机构信息

Informatics and Mathematical Modelling, Technical University of Denmark, Kgs. Lyngby, Denmark.

出版信息

Med Image Anal. 2007 Oct;11(5):417-28. doi: 10.1016/j.media.2007.07.008. Epub 2007 Aug 19.

Abstract

The support vector domain description is a one-class classification method that estimates the distributional support of a data set. A flexible closed boundary function is used to separate trustworthy data on the inside from outliers on the outside. A single regularization parameter determines the shape of the boundary and the proportion of observations that are regarded as outliers. Picking an appropriate amount of regularization is crucial in most applications but is, for computational reasons, commonly limited to a small collection of parameter values. This paper presents an algorithm where the solutions for all possible values of the regularization parameter are computed at roughly the same computational complexity previously required to obtain a single solution. Such a collection of solutions is known as a regularization path. Knowledge of the entire regularization path not only aids model selection, but may also provide new information about a data set. We illustrate this potential of the method in two applications; one where we establish a sensible ordering among a set of corpora callosa outlines, and one where ischemic segments of the myocardium are detected in patients with acute myocardial infarction.

摘要

支持向量域描述是一种单类分类方法,用于估计数据集的分布支持。使用一个灵活的封闭边界函数将内部的可信数据与外部的异常值分开。单个正则化参数决定边界的形状以及被视为异常值的观测值比例。在大多数应用中,选择合适的正则化量至关重要,但出于计算原因,通常限于一小部分参数值。本文提出了一种算法,其中以与先前获得单个解所需的大致相同的计算复杂度计算正则化参数的所有可能值的解。这样一组解被称为正则化路径。了解整个正则化路径不仅有助于模型选择,还可能提供有关数据集的新信息。我们在两个应用中说明了该方法的这种潜力;一个是在一组胼胝体轮廓之间建立合理的排序,另一个是在急性心肌梗死患者中检测心肌的缺血段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验