Timi J T, Poulin R
Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas.
Parasitology. 2008 Jan;135(Pt 1):131-8. doi: 10.1017/S0031182007003605. Epub 2007 Sep 10.
The search for nested subset patterns has become a powerful tool for understanding the processes shaping parasite communities. Here, we re-examine the results of past studies on nestedness in parasite communities, to assess how sensitive they are to the analytical method used. Using the metric N and the null model RANDOM1, the first method available to study nested patterns, early studies concluded that nestedness was infrequent in parasite communities. In contrast later studies, using instead the metric T and the nestedness temperature calculator (NTC), found that nested subset patterns were very common in parasite communities. Recently, a new algorithm, the binary matrix nestedness temperature calculator (BINMATNEST), has been proposed to quantify nestedness. Using data on 31 helminth communities of fish hosts, we show that applying the NTC yields consistently more significant nested patterns than when N and RANDOM1 are used on the same data. The use of BINMATNEST produced results that depend on the choice of the null model. To provide a benchmark, a straightforward comparison between the observed frequencies of co-occurrences of species with those expected from their prevalence under random assembly was also made for each community. This test indicates that random structure occurs in practically all communities, even those where one of the nestedness analyses found a significant pattern. We demonstrate that the probability of finding a nested pattern in a parasite community depends entirely on the metric and null model chosen for analysis.
寻找嵌套子集模式已成为理解塑造寄生虫群落过程的有力工具。在此,我们重新审视过去关于寄生虫群落嵌套性的研究结果,以评估它们对所使用分析方法的敏感程度。早期研究使用度量标准N和零模型RANDOM1(研究嵌套模式的第一种可用方法)得出结论,寄生虫群落中嵌套性并不常见。相比之下,后来的研究改用度量标准T和嵌套性温度计算器(NTC),发现嵌套子集模式在寄生虫群落中非常普遍。最近,一种新算法——二元矩阵嵌套性温度计算器(BINMATNEST)被提出来量化嵌套性。利用鱼类宿主的31个蠕虫群落的数据,我们表明,与对相同数据使用N和RANDOM1相比,应用NTC始终能产生更显著的嵌套模式。使用BINMATNEST得出的结果取决于零模型的选择。为了提供一个基准,我们还对每个群落中物种共现的观察频率与随机组合下根据其流行率预期的频率进行了直接比较。该测试表明,实际上所有群落都存在随机结构,即使在嵌套性分析发现有显著模式的群落中也是如此。我们证明,在寄生虫群落中发现嵌套模式的概率完全取决于为分析所选的度量标准和零模型。