Suppr超能文献

使用基于成分的模型研究高血压引起的动脉重塑。

Arterial remodeling in response to hypertension using a constituent-based model.

作者信息

Tsamis Alkiviadis, Stergiopulos Nikos

机构信息

Laboratory of Hemodynamics and Cardiovascular Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H3130-9. doi: 10.1152/ajpheart.00684.2007. Epub 2007 Sep 7.

Abstract

Hypertension-induced arterial remodeling has been previously modeled using stress-driven remodeling rate equations in terms of global geometrical adaptation (Rachev A, Stergiopulos N, Meister JJ. Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J Biomech 29: 635-642, 1996) and was extended later to include adaptation of material properties (Rachev A, Stergiopulos N, Meister JJ. A model for geometric and mechanical adaptation of arteries to sustained hypertension. J Biomech Eng 120: 9-17, 1998). These models, however, used a phenomenological strain energy function (SEF), the parameters of which do not bear a clear physiological meaning. Here, we extend the work of Rachev et al. (1998) by applying similar remodeling rate equations to a constituent-based SEF. The new SEF includes a statistical description for collagen engagement, and remodeling now affects material properties only through changes in the collagen engagement probability density function. The model predicts asymptotic wall thickening and unchanged deformed inner radius as to conserve hoop stress and intimal shear stress, respectively, at the final adapted hypertensive state. Mechanical adaptation serves to restore arterial compliance to control levels. Average circumferential stress-strain curves show that the material at the final adapted hypertensive state is softer than its normotensive counterpart. These findings as well as the predicted pressure-diameter curves are in good qualitative agreement with experimental data. The novelty in our findings is that biomechanical adaptation leading to maintenance of compliance at the hypertensive state can be perfectly achieved by appropriate readjustment of the collagen engagement profile alone.

摘要

高血压诱导的动脉重塑此前已通过应力驱动的重塑速率方程,依据整体几何适应性进行建模(拉切夫A、斯泰吉奥普洛斯N、迈斯特JJ。血压变化时动脉壁重塑动力学的理论研究。《生物力学杂志》29: 635 - 642,1996年),后来又扩展到包括材料特性的适应性(拉切夫A、斯泰吉奥普洛斯N、迈斯特JJ。动脉对持续性高血压的几何和力学适应性模型。《生物力学工程杂志》120: 9 - 17,1998年)。然而,这些模型使用了一个唯象应变能函数(SEF),其参数没有明确的生理学意义。在此,我们通过将类似的重塑速率方程应用于基于成分的SEF,扩展了拉切夫等人(1998年)的工作。新的SEF包括对胶原结合的统计描述,并且重塑现在仅通过胶原结合概率密度函数的变化来影响材料特性。该模型预测,在最终适应的高血压状态下,动脉壁会渐近性增厚,而变形的内半径不变,分别是为了保持环向应力和内膜剪切应力。力学适应性有助于将动脉顺应性恢复到对照水平。平均周向应力 - 应变曲线表明,在最终适应的高血压状态下的材料比其正常血压状态下的对应材料更软。这些发现以及预测的压力 - 直径曲线与实验数据在定性上吻合良好。我们研究结果的新颖之处在于,仅通过适当重新调整胶原结合分布,就能完美实现导致高血压状态下顺应性维持的生物力学适应性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验