Suppr超能文献

积分差分方程中的密度依赖扩散

Density-dependent dispersal in integrodifference equations.

作者信息

Lutscher Frithjof

机构信息

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, ON K1N 6N5, Canada.

出版信息

J Math Biol. 2008 Apr;56(4):499-524. doi: 10.1007/s00285-007-0127-1. Epub 2007 Sep 13.

Abstract

Many species exhibit dispersal processes with positive density- dependence. We model this behavior using an integrodifference equation where the individual dispersal probability is a monotone increasing function of local density. We investigate how this dispersal probability affects the spreading speed of a single population and its ability to persist in fragmented habitats. We demonstrate that density-dependent dispersal probability can act as a mechanism for coexistence of otherwise non-coexisting competitors. We show that in time-varying habitats, an intermediate dispersal probability will evolve. Analytically, we find that the spreading speed for the integrodifference equation with density-dependent dispersal probability is not linearly determined. Furthermore, the next-generation operator is not compact and, in general, neither order-preserving nor monotonicity-preserving. We give two explicit examples of non-monotone, discontinuous traveling-wave profiles.

摘要

许多物种表现出具有正密度依赖性的扩散过程。我们使用一个积分差分方程对这种行为进行建模,其中个体扩散概率是局部密度的单调递增函数。我们研究这种扩散概率如何影响单一物种种群的传播速度及其在破碎栖息地中持续存在的能力。我们证明,密度依赖性扩散概率可以作为原本无法共存的竞争者实现共存的一种机制。我们表明,在随时间变化的栖息地中,会演化出一种中间扩散概率。通过分析,我们发现具有密度依赖性扩散概率的积分差分方程的传播速度不是由线性决定的。此外,下一代算子不是紧算子,并且一般来说既不保持序也不保持单调性。我们给出了两个非单调、不连续行波剖面的明确例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验