Boldman K G, Van Vleck L D
USDA R. L. Hruska US Meat Animal Research Center, University of Nebraska, Lincoln 68583-0908.
J Dairy Sci. 1991 Dec;74(12):4337-43. doi: 10.3168/jds.S0022-0302(91)78629-3.
Estimation of (co)variance components by derivative-free REML requires repeated evaluation of the log-likelihood function of the data. Gaussian elimination of the augmented mixed model coefficient matrix is often used to evaluate the likelihood function, but it can be costly for animal models with large coefficient matrices. This study investigated the use of a direct sparse matrix solver to obtain the log-likelihood function. The sparse matrix package SPARSPAK was used to reorder the mixed model equations once and then repeatedly to solve the equations by Cholesky factorization to generate the terms required to calculate the likelihood. The animal model used for comparison contained 19 fixed levels, 470 maternal permanent environmental effects, and 1586 direct and 1586 maternal genetic effects, resulting in a coefficient matrix of order 3661 with .3% nonzero elements after including numerator relationships. Compared with estimation via Gaussian elimination of the unordered system, utilization of SPARSPAK required 605 and 240 times less central processing unit time on mainframes and personal computers, respectively. The SPARSPAK package also required less memory and provided solutions for all effects in the model.
通过无导数限制极大似然法(REML)估计(协)方差分量需要对数据的对数似然函数进行反复评估。通常使用增广混合模型系数矩阵的高斯消元法来评估似然函数,但对于具有大型系数矩阵的动物模型而言,其成本可能很高。本研究探讨了使用直接稀疏矩阵求解器来获得对数似然函数。稀疏矩阵软件包SPARSPAK用于对混合模型方程进行一次重新排序,然后通过乔列斯基分解反复求解方程,以生成计算似然所需的项。用于比较的动物模型包含19个固定水平、470个母体永久环境效应以及1586个直接遗传效应和1586个母体遗传效应,在纳入亲缘关系后,得到一个3661阶的系数矩阵,其中非零元素占0.3%。与通过对无序系统进行高斯消元法估计相比,在大型机和个人计算机上使用SPARSPAK分别需要少605倍和240倍的中央处理器时间。SPARSPAK软件包所需内存也更少,并且能为模型中的所有效应提供解。