Suppr超能文献

用于实际电极神经刺激的非矩形波形。

Non-rectangular waveforms for neural stimulation with practical electrodes.

作者信息

Sahin Mesut, Tie Yanmei

机构信息

New Jersey Institute of Technology, Newark, NJ, USA.

出版信息

J Neural Eng. 2007 Sep;4(3):227-33. doi: 10.1088/1741-2560/4/3/008. Epub 2007 May 2.

Abstract

Historically the rectangular pulse waveform has been the choice for neural stimulation. The strength-duration curve is thus defined for rectangular pulses. Not much attention has been paid to alternative waveforms to determine if the pulse shape has an effect on the strength-duration relation. Similarly the charge injection capacity of neural electrodes has also been measured with rectangular pulses. In this study we questioned if non-rectangular waveforms can generate a stronger stimulation effect, when applied through practical electrodes, by minimizing the neural activation threshold and maximizing the charge injection capacity of the electrode. First, the activation threshold parameters were studied with seven different pulse shapes using computer simulations of a local membrane model. These waveforms were rectangular, linear increase and decrease, exponential increase and decrease, Gaussian, and sinusoidal. The chronaxie time was found to be longer with all the non-rectangular pulses and some provided more energy efficient stimulation than the rectangular waveform. Second, the charge injection capacity of titanium nitride microelectrodes was measured experimentally for the same waveforms. Linearly decreasing ramp provided the best charge injection for all pulse widths tested from 0.02 to 0.5 ms. Finally, the most efficient waveform that maximized the charge injection capacity of the electrode while providing the lowest threshold charge for neural activation was searched. Linear and exponential decrease, and Gaussian waveforms were found to be the most efficient pulse shapes.

摘要

从历史上看,矩形脉冲波形一直是神经刺激的选择。因此,强度-持续时间曲线是针对矩形脉冲定义的。对于替代波形,人们并没有太多关注,以确定脉冲形状是否会对强度-持续时间关系产生影响。同样,神经电极的电荷注入能力也是用矩形脉冲来测量的。在本研究中,我们质疑非矩形波形通过实际电极施加时,是否可以通过最小化神经激活阈值和最大化电极的电荷注入能力来产生更强的刺激效果。首先,使用局部膜模型的计算机模拟,研究了七种不同脉冲形状的激活阈值参数。这些波形为矩形、线性上升和下降、指数上升和下降、高斯和正弦波形。发现所有非矩形脉冲的时值都更长,并且有些比矩形波形提供了更节能的刺激。其次,针对相同波形,对氮化钛微电极的电荷注入能力进行了实验测量。对于从0.02到0.5毫秒测试的所有脉冲宽度,线性下降斜坡提供了最佳的电荷注入。最后,寻找了能最大化电极电荷注入能力同时为神经激活提供最低阈值电荷的最有效波形。发现线性和指数下降以及高斯波形是最有效的脉冲形状。

相似文献

1
Non-rectangular waveforms for neural stimulation with practical electrodes.
J Neural Eng. 2007 Sep;4(3):227-33. doi: 10.1088/1741-2560/4/3/008. Epub 2007 May 2.
3
Evaluation of novel stimulus waveforms for deep brain stimulation.
J Neural Eng. 2010 Dec;7(6):066008. doi: 10.1088/1741-2560/7/6/066008. Epub 2010 Nov 17.
4
Stimulation threshold comparison of time-varying magnetic pulses with different waveforms.
J Magn Reson Imaging. 2009 Jan;29(1):229-36. doi: 10.1002/jmri.21573.
5
Extracellular stimulation of mouse retinal ganglion cells with non-rectangular voltage-controlled waveforms.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:642-5. doi: 10.1109/IEMBS.2009.5333464.
6
Neural stimulation and recording electrodes.
Annu Rev Biomed Eng. 2008;10:275-309. doi: 10.1146/annurev.bioeng.10.061807.160518.
9
Comparison of the efficiency of chopped and non-rectangular electrical stimulus waveforms in activating small vagus nerve fibers.
J Neurosci Methods. 2019 May 15;320:1-8. doi: 10.1016/j.jneumeth.2019.02.017. Epub 2019 Mar 1.
10
Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm.
J Neural Eng. 2010 Aug;7(4):046009. doi: 10.1088/1741-2560/7/4/046009. Epub 2010 Jun 23.

引用本文的文献

1
Regulatory mechanism of inhibitory interneurons with time-delay on epileptic seizures under sinusoidal sensory stimulation.
Cogn Neurodyn. 2025 Dec;19(1):37. doi: 10.1007/s11571-025-10227-z. Epub 2025 Feb 5.
3
A 14-Bit, 12 V-to-100 V Voltage Compliance Electrical Stimulator with Redundant Digital Calibration.
Micromachines (Basel). 2023 Oct 28;14(11):2001. doi: 10.3390/mi14112001.
5
Dynamical Mechanism Analysis of Three Neuroregulatory Strategies on the Modulation of Seizures.
Int J Mol Sci. 2022 Nov 7;23(21):13652. doi: 10.3390/ijms232113652.
6
Cholinergic Deep Brain Stimulation for Memory and Cognitive Disorders.
J Alzheimers Dis. 2021;83(2):491-503. doi: 10.3233/JAD-210425.
7
Energy-Efficient Integrated Circuit Solutions Toward Miniaturized Closed-Loop Neural Interface Systems.
Front Neurosci. 2021 May 31;15:667447. doi: 10.3389/fnins.2021.667447. eCollection 2021.
8
Cutaneous sensation of electrical stimulation waveforms.
Brain Stimul. 2021 May-Jun;14(3):693-702. doi: 10.1016/j.brs.2021.04.008. Epub 2021 Apr 10.
9
Systematic Evaluation of DBS Parameters in the Hemi-Parkinsonian Rat Model.
Front Neurosci. 2020 Oct 9;14:561008. doi: 10.3389/fnins.2020.561008. eCollection 2020.

本文引用的文献

1
ON THE INTENSITY-TIME RELATIONS FOR STIMULATION BY ELECTRIC CURRENTS. II.
J Gen Physiol. 1932 Jul 20;15(6):731-55. doi: 10.1085/jgp.15.6.731.
2
ON THE INTENSITY-TIME RELATIONS FOR STIMULATION BY ELECTRIC CURRENTS. I.
J Gen Physiol. 1932 Jul 20;15(6):709-29. doi: 10.1085/jgp.15.6.709.
4
Microstimulation in auditory cortex provides a substrate for detailed behaviors.
Hear Res. 2005 Dec;210(1-2):112-7. doi: 10.1016/j.heares.2005.08.004. Epub 2005 Oct 4.
5
Selective motor unit recruitment via intrafascicular multielectrode stimulation.
Can J Physiol Pharmacol. 2004 Aug-Sep;82(8-9):599-609. doi: 10.1139/y04-047.
6
Cochlear nerve stimulation with a 3-dimensional penetrating electrode array.
Otol Neurotol. 2003 Sep;24(5):764-8. doi: 10.1097/00129492-200309000-00013.
8
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
9
In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1574-9. doi: 10.1109/TBME.2002.805487.
10
Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes.
J Neurophysiol. 2001 Apr;85(4):1585-94. doi: 10.1152/jn.2001.85.4.1585.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验