Suppr超能文献

A redox-based chemical delivery system that enhances estradiol distribution to the brain: disposition studies in the rat.

作者信息

Estes K S, Keuth V, Dietzel K, Brewster M E, Bodor N S, Derendorf H

机构信息

Center for Drug Design and Delivery, College of Pharmacy, University of Florida, Gainesville 32610.

出版信息

Pharm Res. 1991 Sep;8(9):1180-5. doi: 10.1023/a:1015814720778.

Abstract

The disposition of a chemical delivery system for estradiol (E2-CDS) which is based on a redox dihydropyridine-pyridinium salt conversion was investigated in rats. Tissue and plasma concentrations of E2-CDS and the oxidized metabolite (E2-Q+) were evaluated at times ranging from 1 to 14 days after intravenous administration of E2-CDS formulated as a modified cyclodextrin inclusion complex. While E2-CDS levels were below HPLC assay detection limits for all samples by 1 day postdosing, E2-Q+ was readily quantified. The calculated half-life of E2-Q+ was longest in brain tissue, significantly shorter in heart, lung, and kidney tissues, and shortest in plasma. There was a linear relationship between administered E2-CDS dose and oxidized metabolite measured in brain as well as in other tissues collected 24 hr after drug administration. Coadministration of high doses of a similarly oxidizable dihydropyridine, 1-methyl-1,4-dihydronicotinamide (NMN), in a dimethylsulfoxide (DMSO) vehicle decreased E2-Q+ measured in brain and other tissues without significantly affecting the relative patterns of distribution in these tissues. Brain tissue E2Q+ levels were not detected after dosing with the oxidized metabolite.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验