Suppr超能文献

豆科模式植物蒺藜苜蓿中原花青素生物合成的早期步骤。

Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula.

作者信息

Pang Yongzhen, Peel Gregory J, Wright Elane, Wang Zengyu, Dixon Richard A

机构信息

Plant Biology Division , Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA.

出版信息

Plant Physiol. 2007 Nov;145(3):601-15. doi: 10.1104/pp.107.107326. Epub 2007 Sep 20.

Abstract

Oligomeric proanthocyanidins (PAs) composed primarily of epicatechin units accumulate in the seed coats of the model legume Medicago truncatula, reaching maximal levels at around 20 d after pollination. Genes encoding the single Medicago anthocyanidin synthase (ANS; EC 1.14.11.19) and leucoanthocyanidin reductase (LAR; EC 1.17.1.3) were cloned and the corresponding enzymes functionally identified. Recombinant MtANS converted leucocyanidin to cyanidin, and, more efficiently, dihydroquercetin to the flavonol quercetin. Levels of transcripts encoding dihydroflavonol reductase, ANS, and anthocyanidin reductase (ANR), the enzyme responsible for conversion of anthocyanidin to (-)-epicatechin, paralleled the accumulation of PAs in developing seeds, whereas LAR transcripts appeared to be more transiently expressed. LAR, ANS, and ANR proteins were localized to the cytosol in transfected tobacco (Nicotiana tabacum) leaves. Antisense down-regulation of ANS in M. truncatula resulted in reduced anthocyanin and PA levels, but had no impact on flavonol levels. Transgenic tobacco plants constitutively overexpressing MtLAR showed reduced anthocyanin content, but no catechin or increased levels of PAs were detected either in leaves or in flowers. Our results confirm previously ascribed in vivo functions for ANS and ANR. However, the apparent lack of catechin in M. truncatula PAs, the poor correlation between LAR expression and PA accumulation, and the lack of production of catechin monomers or oligomers in transgenic plants overexpressing MtLAR question the role of MtLAR in PA biosynthesis in Medicago.

摘要

主要由表儿茶素单元组成的低聚原花青素(PAs)在模式豆科植物蒺藜苜蓿的种皮中积累,在授粉后约20天达到最高水平。克隆了编码单一蒺藜苜蓿花青素合酶(ANS;EC 1.14.11.19)和无色花青素还原酶(LAR;EC 1.17.1.3)的基因,并对相应的酶进行了功能鉴定。重组MtANS将无色花青素转化为花青素,更有效地将二氢槲皮素转化为黄酮醇槲皮素。编码二氢黄酮醇还原酶、ANS和花青素还原酶(ANR,负责将花青素转化为(-)-表儿茶素的酶)的转录本水平与发育种子中PAs的积累平行,而LAR转录本似乎表达更短暂。LAR、ANS和ANR蛋白定位于转染烟草(烟草)叶片的细胞质中。蒺藜苜蓿中ANS的反义下调导致花青素和PA水平降低,但对黄酮醇水平没有影响。组成型过表达MtLAR的转基因烟草植株花青素含量降低,但在叶片或花中均未检测到儿茶素或PAs水平升高。我们的结果证实了先前归因于ANS和ANR的体内功能。然而,蒺藜苜蓿PAs中明显缺乏儿茶素、LAR表达与PA积累之间的相关性较差以及过表达MtLAR的转基因植物中缺乏儿茶素单体或低聚物的产生,这些都质疑了MtLAR在蒺藜苜蓿PA生物合成中的作用。

相似文献

1
Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula.
Plant Physiol. 2007 Nov;145(3):601-15. doi: 10.1104/pp.107.107326. Epub 2007 Sep 20.
3
Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula.
Plant Physiol. 2004 Mar;134(3):979-94. doi: 10.1104/pp.103.030221. Epub 2004 Feb 19.
5
Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering.
Plant Physiol. 2013 Mar;161(3):1103-16. doi: 10.1104/pp.112.212050. Epub 2013 Jan 3.
8
Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis.
Planta. 2013 Jul;238(1):139-54. doi: 10.1007/s00425-013-1879-z. Epub 2013 Apr 17.
10
The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago.
Plant J. 2009 Jul;59(1):136-49. doi: 10.1111/j.1365-313X.2009.03885.x. Epub 2009 Apr 2.

引用本文的文献

1
Molecular insights into postharvest seed coat darkening in common beans: a look beyond the gene.
Front Plant Sci. 2025 Aug 19;16:1595906. doi: 10.3389/fpls.2025.1595906. eCollection 2025.
2
Proanthocyanidin biosynthesis and postharvest seed coat darkening in pinto bean.
Phytochem Rev. 2025;24(4):2445-2461. doi: 10.1007/s11101-023-09895-8. Epub 2023 Oct 12.
7
CaLAP1 and CaLAP2 orchestrate anthocyanin biosynthesis in the seed coat of Cicer arietinum.
Planta. 2024 Jul 1;260(2):38. doi: 10.1007/s00425-024-04470-7.
8
Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy.
Plants (Basel). 2023 Jul 19;12(14):2687. doi: 10.3390/plants12142687.
9
Evolution of Seed-Soluble and Insoluble Tannins during Grape Berry Maturation.
Molecules. 2023 Mar 29;28(7):3050. doi: 10.3390/molecules28073050.

本文引用的文献

1
A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula.
Plant Mol Biol. 2007 Jul;64(5):499-518. doi: 10.1007/s11103-007-9167-6. Epub 2007 Apr 17.
2
The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development.
Plant Physiol. 2007 Mar;143(3):1347-61. doi: 10.1104/pp.106.093203. Epub 2007 Jan 5.
5
Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes.
Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14959-64. doi: 10.1073/pnas.0603228103. Epub 2006 Sep 26.
6
Medicago truncatula transformation using cotyledon explants.
Methods Mol Biol. 2006;343:129-35. doi: 10.1385/1-59745-130-4:129.
8
Genetics and biochemistry of seed flavonoids.
Annu Rev Plant Biol. 2006;57:405-30. doi: 10.1146/annurev.arplant.57.032905.105252.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验