Lee Jun-Seok, Yang Byung-Hwan, Lee Jang-Han, Choi Jun-Ho, Choi Ihn-Geun, Kim Sae-Byul
Department of Psychiatry, Kwandong University College of Medicine, Myongji Hospital, 697-24 Hwajeong, Dukyang, Gyang, Gyunggi 412-270, Republic of Korea.
Clin Neurophysiol. 2007 Nov;118(11):2489-96. doi: 10.1016/j.clinph.2007.08.001. Epub 2007 Sep 24.
Recent findings have demonstrated that the EEG possesses long-range temporal (auto-) correlations (LRTC) in the dynamics of broad band oscillations. The analysis of LRTC provides a quantitative index of statistical dependencies in oscillations on different time scales. We analyzed LRTC in resting EEG signals in depressed outpatients and healthy controls.
The participants in this study were 11 non-depressed, age-matched controls, and 11 unmedicated unipolar depressed patients. EEG data were obtained from each participant during 5-min resting baseline periods with eyes closed and then analyzed with detrended fluctuation analysis (DFA), a scaling analysis method that quantifies a simple parameter to represent the correlation properties of a time series. The scaling exponent, the result of DFA, provides a quantitative measure of LRTC from the EEG.
The present study demonstrates that all the scaling exponents in depressed patients and healthy controls were greater than 0.5 and less than 1.0, regardless of condition. Furthermore, the scaling exponents of depressed patients have relatively higher values in whole brain regions compared to healthy controls, with significant differences at F3, C3, T3, T4 and O1 channels (p<0.05). Finally, a significant linear correlation was observed between the severity of depression and the scaling exponent over most of the channels, except O2.
These results suggest that the brain affected by a major depressive disorder shows slower decay of the LRTC, and that the persistence of the LRTC of EEG in depressed patients was associated with the severity of depression over most of the cortical areas.
The DFA method may broaden our understanding of the psychophysiological basis of depression.
最近的研究结果表明,脑电图(EEG)在宽带振荡动力学中具有长程时间(自)相关性(LRTC)。对LRTC的分析提供了不同时间尺度振荡中统计依赖性的定量指标。我们分析了抑郁症门诊患者和健康对照者静息EEG信号中的LRTC。
本研究的参与者为11名非抑郁、年龄匹配的对照者和11名未用药的单相抑郁症患者。在每个参与者闭眼休息5分钟的基线期获取EEG数据,然后用去趋势波动分析(DFA)进行分析,DFA是一种标度分析方法,可量化一个简单参数来表示时间序列的相关特性。DFA的结果即标度指数,提供了来自EEG的LRTC的定量测量。
本研究表明,无论何种情况,抑郁症患者和健康对照者的所有标度指数均大于0.5且小于1.0。此外,与健康对照者相比,抑郁症患者在全脑区域的标度指数相对较高,在F3、C3、T3、T4和O1通道存在显著差异(p<0.05)。最后,除O2通道外,在大多数通道上观察到抑郁严重程度与标度指数之间存在显著的线性相关性。
这些结果表明,受重度抑郁症影响的大脑显示出LRTC的衰减较慢,并且抑郁症患者EEG的LRTC持续性与大多数皮质区域的抑郁严重程度相关。
DFA方法可能拓宽我们对抑郁症心理生理基础的理解。