Furth Alfred F, Mandrekar Sumithra J, Tan Angelina D, Rau Andrea, Felten Sara J, Ames Matthew M, Adjei Alex A, Erlichman Charles, Reid Joel M
Division of Biostatistics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
Cancer Chemother Pharmacol. 2008 Jan;61(1):39-45. doi: 10.1007/s00280-007-0443-6. Epub 2007 Mar 20.
The Hsp90-directed anticancer agent 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) is currently undergoing phase I and phase II clinical investigation. Our goal was to develop a simple limited sampling model (LSM) for AUC of 17-AAG and its active metabolite, 17-(amino)-17-demethoxygeldanomycin (17-AG) using drug concentrations from a few time points.
Pharmacokinetic data from 34 patients treated at 11 dose levels on a Mayo Clinic Cancer Center phase I clinical trial of 17-AAG was utilized. Blood samples were collected at 11 different time points, spanning 25 h. Graphical methods and correlations were used to assess functional forms and univariate relationships. Multivariate linear regression and bootstrap resampling were used to develop the LSM.
Using log-transformed data, the two and three time point 17-AAG LSMs are log-AUC (17-AAG) = 0.869 + 0.653*(C(55min)) +0.469*(C(5h)) and log-AUC (17-AAG) = 2.449 + 0.400*(C(55min)) +0.441*(C(5h)) +0.142*(C(9h)). The two and three time point LSMs for 17-AG are log-AUC (17-AG) = 3.590 + 0.747*(C(5h)) +0.169*(C(17h)), and log-AUC (17-AG) = 3.797 + 0.650*(C(5h)) +0.111*(C(9h)) +0.122*(C(17h)). Ninety-seven percent and 94% of the predicted log-AUC values were within 5% of the observed log-AUC for the two and three time point models for 17-AAG and 17-AG respectively.
The precise calculation of AUC is cumbersome and expensive in terms of patient and clinical resources. The LSM developed using a multivariate regression approach is clinically and statistically meaningful. Prospective validation is underway.
热休克蛋白90导向的抗癌药物17-(烯丙基氨基)-17-去甲氧基格尔德霉素(17-AAG)目前正处于I期和II期临床研究阶段。我们的目标是利用几个时间点的药物浓度,为17-AAG及其活性代谢产物17-(氨基)-17-去甲氧基格尔德霉素(17-AG)的AUC建立一个简单的有限采样模型(LSM)。
利用梅奥诊所癌症中心17-AAG I期临床试验中34例患者在11个剂量水平下的药代动力学数据。在11个不同时间点采集血样,时间跨度为25小时。采用图形法和相关性分析来评估函数形式和单变量关系。使用多元线性回归和自助重采样来建立LSM。
使用对数转换后的数据,17-AAG的两时间点和三时间点LSM分别为log-AUC(17-AAG)=0.869+0.653×(C(55分钟))+0.469×(C(5小时))以及log-AUC(17-AAG)=2.449+0.400×(C(55分钟))+0.441×(C(5小时))+0.142×(C(9小时))。17-AG的两时间点和三时间点LSM分别为log-AUC(17-AG)=3.590+0.747×(C(5小时))+0.169×(C(17小时)),以及log-AUC(17-AG)=3.797+0.650×(C(5小时))+0.111×(C(9小时))+0.122×(C(17小时))。对于17-AAG和17-AG的两时间点和三时间点模型,分别有97%和94%的预测log-AUC值在观察到的log-AUC的5%范围内。
就患者和临床资源而言,AUC的精确计算既繁琐又昂贵。使用多元回归方法建立的LSM在临床和统计学上具有意义。前瞻性验证正在进行中。