Suppr超能文献

关于形态发生机械调节的别洛乌索夫超恢复假说的理论研究。

Theoretical study of Beloussov's hyper-restoration hypothesis for mechanical regulation of morphogenesis.

作者信息

Taber Larry A

机构信息

Department of Biomedical Engineering, Washington University, Campus Box 1097, St Louis, MO 63130, USA.

出版信息

Biomech Model Mechanobiol. 2008 Dec;7(6):427-41. doi: 10.1007/s10237-007-0106-x. Epub 2007 Oct 2.

Abstract

Computational models were used to explore the idea that morphogenesis is regulated, in part, by feedback from mechanical stress according to Beloussov's hyper-restoration (HR) hypothesis. According to this hypothesis, active tissue responses to stress perturbations tend to restore, but overshoot, the original (target) stress. To capture this behavior, the rate of growth or contraction is assumed to depend on the difference between the current and target stresses. Stress overshoot is obtained by letting the target stress change at a rate proportional to the same stress difference. The feasibility of the HR hypothesis is illustrated by models for stretching of epithelia, cylindrical bending of plates, invagination of cylindrical and spherical shells, and early amphibian development. In each case, an initial perturbation leads to an active mechanical response that changes the form of the tissue. The results show that some morphogenetic processes can be entirely self-driven by HR responses once they are initiated (possibly by genetic activity). Other processes, however, may require secondary mechanisms or perturbations to proceed to completion.

摘要

根据别洛乌索夫的超恢复(HR)假说,利用计算模型来探究形态发生部分受机械应力反馈调节这一观点。根据该假说,活跃的组织对应力扰动的反应倾向于恢复,但会超过原始(目标)应力。为了捕捉这种行为,假定生长或收缩速率取决于当前应力与目标应力之间的差值。通过使目标应力以与相同应力差值成比例的速率变化来获得应力超调。上皮拉伸、板的圆柱弯曲、圆柱壳和球壳内陷以及早期两栖动物发育的模型说明了HR假说的可行性。在每种情况下,初始扰动都会引发活跃的机械反应,从而改变组织的形态。结果表明,一旦某些形态发生过程启动(可能由基因活动引发),它们可以完全由HR反应自我驱动。然而,其他过程可能需要二级机制或扰动才能完成。

相似文献

1
Theoretical study of Beloussov's hyper-restoration hypothesis for mechanical regulation of morphogenesis.
Biomech Model Mechanobiol. 2008 Dec;7(6):427-41. doi: 10.1007/s10237-007-0106-x. Epub 2007 Oct 2.
2
Computational modeling of morphogenesis regulated by mechanical feedback.
Biomech Model Mechanobiol. 2008 Apr;7(2):77-91. doi: 10.1007/s10237-007-0077-y. Epub 2007 Feb 21.
5
Variation and robustness of the mechanics of gastrulation: the role of tissue mechanical properties during morphogenesis.
Birth Defects Res C Embryo Today. 2007 Dec;81(4):253-69. doi: 10.1002/bdrc.20108.
6
Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
Dev Growth Differ. 2004 Aug;46(4):309-26. doi: 10.1111/j.1440-169x.2004.00755.x.
7
Morphogenesis can be driven by properly parametrised mechanical feedback.
Eur Phys J E Soft Matter. 2013 Nov;36(11):132. doi: 10.1140/epje/i2013-13132-x. Epub 2013 Nov 25.
8
Towards a unified theory for morphomechanics.
Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3555-83. doi: 10.1098/rsta.2009.0100.

引用本文的文献

1
Modulation of mechanosensitive genes during embryonic aortic arch development.
Dev Dyn. 2025 Mar;254(3):222-239. doi: 10.1002/dvdy.728. Epub 2024 Aug 3.
3
Imaging Approaches and the Quantitative Analysis of Heart Development.
J Cardiovasc Dev Dis. 2023 Mar 29;10(4):145. doi: 10.3390/jcdd10040145.
4
Growth anisotropy of the extracellular matrix shapes a developing organ.
Nat Commun. 2023 Mar 3;14(1):1220. doi: 10.1038/s41467-023-36739-y.
6
Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development.
J Cardiovasc Dev Dis. 2022 Feb 21;9(2):64. doi: 10.3390/jcdd9020064.
7
Glomerular filtration and podocyte tensional homeostasis: importance of the minor type IV collagen network.
Biomech Model Mechanobiol. 2020 Dec;19(6):2433-2442. doi: 10.1007/s10237-020-01347-y. Epub 2020 May 27.
8
The role of topology and mechanics in uniaxially growing cell networks.
Proc Math Phys Eng Sci. 2020 Jan;476(2233):20190523. doi: 10.1098/rspa.2019.0523. Epub 2020 Jan 29.
9
10
Are Homeostatic States Stable? Dynamical Stability in Morphoelasticity.
Bull Math Biol. 2019 Aug;81(8):3219-3244. doi: 10.1007/s11538-018-0502-7. Epub 2018 Sep 21.

本文引用的文献

1
Computational modeling of morphogenesis regulated by mechanical feedback.
Biomech Model Mechanobiol. 2008 Apr;7(2):77-91. doi: 10.1007/s10237-007-0077-y. Epub 2007 Feb 21.
2
Information about a form (on the dynamic laws of morphogenesis).
Biosystems. 2007 Feb;87(2-3):204-14. doi: 10.1016/j.biosystems.2006.09.015. Epub 2006 Sep 9.
3
A deformation gradient decomposition method for the analysis of the mechanics of morphogenesis.
J Biomech. 2007;40(6):1372-80. doi: 10.1016/j.jbiomech.2006.05.006. Epub 2006 Jun 30.
4
Computational model for early cardiac looping.
Ann Biomed Eng. 2006 Aug;34(8):1655-69. doi: 10.1007/s10439-005-9021-4.
5
Cellular mechanotransduction: putting all the pieces together again.
FASEB J. 2006 May;20(7):811-27. doi: 10.1096/fj.05-5424rev.
6
Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events.
Int J Dev Biol. 2006;50(2-3):113-22. doi: 10.1387/ijdb.052057lb.
7
Morphomechanics: goals, basic experiments and models.
Int J Dev Biol. 2006;50(2-3):81-92. doi: 10.1387/ijdb.052056lb.
8
Tensile properties of embryonic epithelia measured using a novel instrument.
J Biomech. 2005 Oct;38(10):2087-94. doi: 10.1016/j.jbiomech.2004.09.005.
9
Material properties and residual stress in the stage 12 chick heart during cardiac looping.
J Biomech Eng. 2004 Dec;126(6):823-30. doi: 10.1115/1.1824129.
10
Prestress mediates force propagation into the nucleus.
Biochem Biophys Res Commun. 2005 Apr 8;329(2):423-8. doi: 10.1016/j.bbrc.2005.02.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验