Suppr超能文献

血液-神经假说:关于血流在信息处理中的作用

The hemo-neural hypothesis: on the role of blood flow in information processing.

作者信息

Moore Christopher I, Cao Rosa

机构信息

McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.

出版信息

J Neurophysiol. 2008 May;99(5):2035-47. doi: 10.1152/jn.01366.2006. Epub 2007 Oct 3.

Abstract

Brain vasculature is a complex and interconnected network under tight regulatory control that exists in intimate communication with neurons and glia. Typically, hemodynamics are considered to exclusively serve as a metabolic support system. In contrast to this canonical view, we propose that hemodynamics also play a role in information processing through modulation of neural activity. Functional hyperemia, the basis of the functional MRI (fMRI) BOLD signal, is a localized influx of blood correlated with neural activity levels. Functional hyperemia is considered by many to be excessive from a metabolic standpoint, but may be appropriate if interpreted as having an activity-dependent neuro-modulatory function. Hemodynamics may impact neural activity through direct and indirect mechanisms. Direct mechanisms include delivery of diffusible blood-borne messengers and mechanical and thermal modulation of neural activity. Indirect mechanisms are proposed to act through hemodynamic modulation of astrocytes, which can in turn regulate neural activity. These hemo-neural mechanisms should alter the information processing capacity of active local neural networks. Here, we focus on analysis of neocortical sensory processing. We predict that hemodynamics alter the gain of local cortical circuits, modulating the detection and discrimination of sensory stimuli. This novel view of information processing-that includes hemodynamics as an active and significant participant-has implications for understanding neural representation and the construction of accurate brain models. There are also potential medical benefits of an improved understanding of the role of hemodynamics in neural processing, as it directly bears on interpretation of and potential treatment for stroke, dementia, and epilepsy.

摘要

脑循环系统是一个复杂且相互连接的网络,处于严格的调控之下,与神经元和神经胶质细胞密切沟通。通常,血液动力学被认为仅仅是一个代谢支持系统。与这种传统观点不同,我们提出血液动力学还通过调节神经活动在信息处理中发挥作用。功能性充血是功能磁共振成像(fMRI)血氧水平依赖(BOLD)信号的基础,是与神经活动水平相关的局部血流涌入。许多人认为从代谢角度来看,功能性充血是过度的,但如果将其解释为具有活动依赖性神经调节功能,可能是适当的。血液动力学可能通过直接和间接机制影响神经活动。直接机制包括输送可扩散的血液携带信使以及对神经活动的机械和热调节。间接机制被认为是通过对星形胶质细胞的血液动力学调节起作用,星形胶质细胞进而可以调节神经活动。这些血液 - 神经机制应该会改变活跃的局部神经网络的信息处理能力。在这里,我们专注于新皮质感觉处理的分析。我们预测血液动力学改变局部皮质回路的增益,调节感觉刺激的检测和辨别。这种包括血液动力学作为积极且重要参与者的信息处理新观点,对于理解神经表征和构建准确的脑模型具有重要意义。更好地理解血液动力学在神经处理中的作用也有潜在的医学益处,因为它直接关系到中风、痴呆和癫痫的解释和潜在治疗。

相似文献

1
The hemo-neural hypothesis: on the role of blood flow in information processing.
J Neurophysiol. 2008 May;99(5):2035-47. doi: 10.1152/jn.01366.2006. Epub 2007 Oct 3.
3
Submillimeter-resolution fMRI: Toward understanding local neural processing.
Prog Brain Res. 2016;225:123-52. doi: 10.1016/bs.pbr.2016.03.003. Epub 2016 Apr 1.
4
Cortical lamina-dependent blood volume changes in human brain at 7 T.
Neuroimage. 2015 Feb 15;107:23-33. doi: 10.1016/j.neuroimage.2014.11.046. Epub 2014 Dec 3.
5
The role of neuronal signaling in controlling cerebral blood flow.
Brain Lang. 2007 Aug;102(2):141-52. doi: 10.1016/j.bandl.2006.08.002. Epub 2006 Sep 28.
6
Decorrelated Input Dissociates Narrow Band γ Power and BOLD in Human Visual Cortex.
J Neurosci. 2017 May 31;37(22):5408-5418. doi: 10.1523/JNEUROSCI.3938-16.2017. Epub 2017 Apr 28.
7
Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).
Neuroimage. 2014 May 1;91:138-45. doi: 10.1016/j.neuroimage.2013.12.062. Epub 2014 Jan 11.
8
Coding and transmission of information by neural ensembles.
Trends Neurosci. 2004 Apr;27(4):225-30. doi: 10.1016/j.tins.2004.02.006.
9
On the use of information theory for the analysis of the relationship between neural and imaging signals.
Magn Reson Imaging. 2008 Sep;26(7):1015-25. doi: 10.1016/j.mri.2008.02.019. Epub 2008 May 16.
10
Functional imaging and neural information coding.
Neuroimage. 2004 Mar;21(3):1083-95. doi: 10.1016/j.neuroimage.2003.10.043.

引用本文的文献

2
Noncanonical EEG-BOLD coupling by default and in schizophrenia.
medRxiv. 2025 Jan 15:2025.01.14.25320216. doi: 10.1101/2025.01.14.25320216.
4
Passive and active exercise do not mitigate mental fatigue during a sustained vigilance task.
Exp Brain Res. 2024 Dec 10;243(1):19. doi: 10.1007/s00221-024-06950-4.
5
The future of transcranial ultrasound as a precision brain interface.
PLoS Biol. 2024 Oct 29;22(10):e3002884. doi: 10.1371/journal.pbio.3002884. eCollection 2024 Oct.
6
Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow.
Nat Commun. 2024 Oct 7;15(1):8686. doi: 10.1038/s41467-024-52969-0.
8
Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain.
Cell Rep. 2024 Sep 24;43(9):114723. doi: 10.1016/j.celrep.2024.114723. Epub 2024 Sep 13.
10
A 10-min reduction in cerebral blood flow does not alter post-intervention executive function: evidence from lower-body negative pressure.
Exp Brain Res. 2024 Sep;242(9):2193-2205. doi: 10.1007/s00221-024-06879-8. Epub 2024 Jul 16.

本文引用的文献

1
Glutamate exocytosis from astrocytes controls synaptic strength.
Nat Neurosci. 2007 Mar;10(3):331-9. doi: 10.1038/nn1849. Epub 2007 Feb 18.
2
Genome-wide atlas of gene expression in the adult mouse brain.
Nature. 2007 Jan 11;445(7124):168-76. doi: 10.1038/nature05453. Epub 2006 Dec 6.
3
The blood-brain barrier and epilepsy.
Epilepsia. 2006 Nov;47(11):1761-74. doi: 10.1111/j.1528-1167.2006.00817.x.
4
Bidirectional control of CNS capillary diameter by pericytes.
Nature. 2006 Oct 12;443(7112):700-4. doi: 10.1038/nature05193. Epub 2006 Oct 1.
5
Finding a face in the crowd: parallel and serial neural mechanisms of visual selection.
Prog Brain Res. 2006;155:147-56. doi: 10.1016/S0079-6123(06)55009-5.
6
On the Regulation of the Blood-supply of the Brain.
J Physiol. 1890 Jan;11(1-2):85-158.17. doi: 10.1113/jphysiol.1890.sp000321.
7
Astrocytic complexity distinguishes the human brain.
Trends Neurosci. 2006 Oct;29(10):547-53. doi: 10.1016/j.tins.2006.08.004. Epub 2006 Aug 30.
8
Signaling from blood vessels to CNS axons through nitric oxide.
J Neurosci. 2006 Jul 19;26(29):7730-40. doi: 10.1523/JNEUROSCI.1528-06.2006.
9
How the body controls brain temperature: the temperature shielding effect of cerebral blood flow.
J Appl Physiol (1985). 2006 Nov;101(5):1481-8. doi: 10.1152/japplphysiol.00319.2006. Epub 2006 Jul 13.
10
The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of neocortical potentiation.
J Neurosci. 2006 Jul 12;26(28):7395-404. doi: 10.1523/JNEUROSCI.0652-06.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验