Suppr超能文献

高尔基体蛋白GCC88是货物从早期内体到反式高尔基体网络高效逆行运输所必需的。

The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network.

作者信息

Lieu Zi Zhao, Derby Merran C, Teasdale Rohan D, Hart Charles, Gunn Priscilla, Gleeson Paul A

机构信息

The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.

出版信息

Mol Biol Cell. 2007 Dec;18(12):4979-91. doi: 10.1091/mbc.e07-06-0622. Epub 2007 Oct 3.

Abstract

Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane-TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.

摘要

从早期/再循环内体到反式高尔基体网络(TGN)的逆行运输途径目前尚不清楚。我们研究了TGN高尔基体蛋白在逆行运输中的作用。在四种TGN高尔基体蛋白p230/高尔基体蛋白-245、高尔基体蛋白-97、GCC185和GCC88中,我们发现GCC88定义了一条从早期内体到TGN的逆行运输途径。通过干扰RNA使HeLa细胞中的GCC88缺失,导致两种货物蛋白(TGN38和一种CD8甘露糖-6-磷酸受体细胞质尾融合蛋白)的质膜-TGN再循环受阻。在GCC88缺失的细胞中,货物再循环在早期内体中被阻断。GCC88的缺失显著改变了t-SNARE syntaxin 6(一种内体到TGN运输所需的 syntaxin)在TGN的定位。此外,过表达syntaxin 6可挽救GCC88缺失细胞中的运输阻断。内化的志贺毒素能有效地从内体运输到GCC88缺失细胞的高尔基体,这表明志贺毒素和TGN38通过不同的逆行运输途径内化。这些发现确定了GCC88在将TGN融合机制定位以从早期内体运输到TGN中的重要作用,并且使我们能够鉴定出一条从志贺毒素中差异选择TGN38和甘露糖-6-磷酸受体的逆行途径。

相似文献

1
The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network.
Mol Biol Cell. 2007 Dec;18(12):4979-91. doi: 10.1091/mbc.e07-06-0622. Epub 2007 Oct 3.
2
Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin.
Eur J Cell Biol. 2010 May;89(5):379-93. doi: 10.1016/j.ejcb.2009.10.021. Epub 2010 Feb 6.
3
The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure.
Traffic. 2007 Jun;8(6):758-73. doi: 10.1111/j.1600-0854.2007.00563.x. Epub 2007 May 4.
4
FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network.
Mol Biol Cell. 2010 Sep 1;21(17):3041-53. doi: 10.1091/mbc.E10-04-0313. Epub 2010 Jul 7.
5
Mammalian GRIP domain proteins differ in their membrane binding properties and are recruited to distinct domains of the TGN.
J Cell Sci. 2004 Nov 15;117(Pt 24):5865-74. doi: 10.1242/jcs.01497. Epub 2004 Nov 2.
6
A role of GCC88 in the retrograde transport of CI-M6PR and the maintenance of lysosomal activity.
Cell Biol Int. 2019 Nov;43(11):1234-1244. doi: 10.1002/cbin.11118. Epub 2019 Jul 21.
8
GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network.
J Biol Chem. 2003 Feb 7;278(6):4216-26. doi: 10.1074/jbc.M210387200. Epub 2002 Nov 20.
10
Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport.
Exp Cell Res. 2012 Mar 10;318(5):464-77. doi: 10.1016/j.yexcr.2011.12.023. Epub 2012 Jan 5.

引用本文的文献

2
Protein sorting from endosomes to the TGN.
Front Cell Dev Biol. 2023 Feb 21;11:1140605. doi: 10.3389/fcell.2023.1140605. eCollection 2023.
3
Human Cytomegalovirus Manipulates Syntaxin 6 for Successful Trafficking and Subsequent Infection of Monocytes.
J Virol. 2022 Jul 27;96(14):e0081922. doi: 10.1128/jvi.00819-22. Epub 2022 Jul 11.
4
6
The golgin family exhibits a propensity to form condensates in living cells.
FEBS Lett. 2020 Oct;594(19):3086-3094. doi: 10.1002/1873-3468.13884. Epub 2020 Aug 2.
7
Different localization of lysosomal-associated membrane protein 1 (LAMP1) in mammalian cultured cell lines.
Histochem Cell Biol. 2020 Apr;153(4):199-213. doi: 10.1007/s00418-019-01842-z. Epub 2020 Jan 6.
8
ARFRP1 functions upstream of ARL1 and ARL5 to coordinate recruitment of distinct tethering factors to the trans-Golgi network.
J Cell Biol. 2019 Nov 4;218(11):3681-3696. doi: 10.1083/jcb.201905097. Epub 2019 Oct 1.
9
Golgi Structure and Function in Health, Stress, and Diseases.
Results Probl Cell Differ. 2019;67:441-485. doi: 10.1007/978-3-030-23173-6_19.
10
The intraflagellar transport protein IFT20 controls lysosome biogenesis by regulating the post-Golgi transport of acid hydrolases.
Cell Death Differ. 2020 Jan;27(1):310-328. doi: 10.1038/s41418-019-0357-y. Epub 2019 May 29.

本文引用的文献

1
The retromer complex and clathrin define an early endosomal retrograde exit site.
J Cell Sci. 2007 Jun 15;120(Pt 12):2022-31. doi: 10.1242/jcs.003020.
3
SNX1 and SNX2 mediate retrograde transport of Shiga toxin.
Biochem Biophys Res Commun. 2007 Jun 29;358(2):566-70. doi: 10.1016/j.bbrc.2007.04.159. Epub 2007 May 4.
4
The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure.
Traffic. 2007 Jun;8(6):758-73. doi: 10.1111/j.1600-0854.2007.00563.x. Epub 2007 May 4.
5
Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins.
J Cell Sci. 2007 Apr 15;120(Pt 8):1457-68. doi: 10.1242/jcs.03436. Epub 2007 Mar 27.
6
VAMP4 cycles from the cell surface to the trans-Golgi network via sorting and recycling endosomes.
J Cell Sci. 2007 Mar 15;120(Pt 6):1028-41. doi: 10.1242/jcs.03387. Epub 2007 Feb 27.
8
A PACS-1, GGA3 and CK2 complex regulates CI-MPR trafficking.
EMBO J. 2006 Oct 4;25(19):4423-35. doi: 10.1038/sj.emboj.7601336. Epub 2006 Sep 14.
9
Retrograde transport from endosomes to the trans-Golgi network.
Nat Rev Mol Cell Biol. 2006 Aug;7(8):568-79. doi: 10.1038/nrm1985.
10
A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling.
Mol Biol Cell. 2006 Oct;17(10):4353-63. doi: 10.1091/mbc.e06-02-0153. Epub 2006 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验