Suppr超能文献

甘油通过大肠杆菌水甘油通道蛋白GlpF的扩散。

Diffusion of glycerol through Escherichia coli aquaglyceroporin GlpF.

作者信息

Hénin Jérôme, Tajkhorshid Emad, Schulten Klaus, Chipot Christophe

机构信息

Equipe de Dynamique des Assemblages Membranaires, UMR Centre National de la Recherche Scientifique/UHP 7565, Nancy Université BP 239, Nancy, France.

出版信息

Biophys J. 2008 Feb 1;94(3):832-9. doi: 10.1529/biophysj.107.115105. Epub 2007 Oct 5.

Abstract

The glycerol uptake facilitator, GlpF, a major intrinsic protein found in Escherichia coli, selectively conducts water and glycerol across the inner membrane. The free energy landscape characterizing the assisted transport of glycerol by this homotetrameric aquaglyceroporin has been explored by means of equilibrium molecular dynamics over a timescale spanning 0.12 micros. To overcome the free energy barriers of the conduction pathway, an adaptive biasing force is applied to the glycerol molecule confined in each of the four channels. The results illuminate the critical role played by intramolecular relaxation on the diffusion properties of the permeant. These free energy calculations reveal that glycerol tumbles and isomerizes on a timescale comparable to that spanned by its adaptive-biasing-force-assisted conduction in GlpF. As a result, reorientation and conformational equilibrium of glycerol in GlpF constitute a bottleneck in the molecular simulations of the permeation event. A profile characterizing the position-dependent diffusion of the permeant has been determined, allowing reaction rate theory to be applied for investigating conduction kinetics based on the measured free energy landscape.

摘要

甘油摄取促进蛋白GlpF是大肠杆菌中发现的一种主要内在蛋白,它能选择性地介导水和甘油穿过内膜。通过平衡分子动力学,在跨越0.12微秒的时间尺度上探索了这种同源四聚体水甘油通道蛋白协助甘油运输的自由能景观。为了克服传导途径的自由能障碍,对限制在四个通道中的每个通道内的甘油分子施加自适应偏置力。结果阐明了分子内弛豫对渗透物扩散特性所起的关键作用。这些自由能计算表明,甘油的翻滚和异构化时间尺度与其在GlpF中由自适应偏置力辅助传导的时间尺度相当。因此,甘油在GlpF中的重新定向和构象平衡构成了渗透事件分子模拟中的一个瓶颈。已经确定了表征渗透物位置依赖性扩散的轮廓,从而可以应用反应速率理论根据测得的自由能景观来研究传导动力学。

相似文献

1
Diffusion of glycerol through Escherichia coli aquaglyceroporin GlpF.
Biophys J. 2008 Feb 1;94(3):832-9. doi: 10.1529/biophysj.107.115105. Epub 2007 Oct 5.
2
Glycerol conductance and physical asymmetry of the Escherichia coli glycerol facilitator GlpF.
Biophys J. 2003 Nov;85(5):2977-87. doi: 10.1016/S0006-3495(03)74718-3.
3
Energetics of glycerol conduction through aquaglyceroporin GlpF.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):6731-6. doi: 10.1073/pnas.102649299. Epub 2002 May 7.
4
Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study.
Biophys J. 2004 Dec;87(6):3690-702. doi: 10.1529/biophysj.104.043315. Epub 2004 Sep 17.
5
The structure of GlpF, a glycerol conducting channel.
Novartis Found Symp. 2002;245:51-61; discussion 61-5, 165-8.
6
Water and glycerol permeation through the glycerol channel GlpF and the aquaporin family.
J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):86-8. doi: 10.1107/s0909049503023872. Epub 2003 Nov 28.
7
The mechanism of glycerol conduction in aquaglyceroporins.
Structure. 2001 Nov;9(11):1083-93. doi: 10.1016/s0969-2126(01)00668-2.
9
Computing osmotic permeabilities of aquaporins AQP4, AQP5, and GlpF from near-equilibrium simulations.
Biochim Biophys Acta Biomembr. 2017 Aug;1859(8):1310-1316. doi: 10.1016/j.bbamem.2017.04.022. Epub 2017 Apr 25.

引用本文的文献

1
Rationalizing the generation of broad spectrum antibiotics with the addition of a positive charge.
Chem Sci. 2021 Oct 14;12(45):15028-15044. doi: 10.1039/d1sc04445a. eCollection 2021 Nov 24.
2
Genomic insights into an andean multiresistant soil actinobacterium of biotechnological interest.
World J Microbiol Biotechnol. 2021 Aug 31;37(10):166. doi: 10.1007/s11274-021-03129-9.
3
In Silico Prediction of Permeability Coefficients.
Methods Mol Biol. 2021;2315:243-261. doi: 10.1007/978-1-0716-1468-6_14.
4
Free energy and kinetics of cAMP permeation through connexin26 via applied voltage and milestoning.
Biophys J. 2021 Aug 3;120(15):2969-2983. doi: 10.1016/j.bpj.2021.06.024. Epub 2021 Jun 30.
6
Free Energy Landscape and Conformational Kinetics of Hoogsteen Base Pairing in DNA vs. RNA.
Biophys J. 2020 Oct 20;119(8):1568-1579. doi: 10.1016/j.bpj.2020.08.031. Epub 2020 Sep 2.
7
Aquaporin-7: A Dynamic Aquaglyceroporin With Greater Water and Glycerol Permeability Than Its Bacterial Homolog GlpF.
Front Physiol. 2020 Jun 30;11:728. doi: 10.3389/fphys.2020.00728. eCollection 2020.
8
Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria.
Biotechnol Biofuels. 2020 Jun 9;13:105. doi: 10.1186/s13068-020-01743-7. eCollection 2020.
9
Water channel pore size determines exclusion properties but not solute selectivity.
Sci Rep. 2019 Dec 30;9(1):20369. doi: 10.1038/s41598-019-56814-z.
10
Glycerol transport through the aquaglyceroporin GlpF: bridging dynamics and kinetics with atomic simulation.
Chem Sci. 2019 Jun 18;10(29):6957-6965. doi: 10.1039/c9sc01690b. eCollection 2019 Aug 7.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Kinetics and mechanism of proton transport across membrane nanopores.
Phys Rev Lett. 2006 Dec 15;97(24):245901. doi: 10.1103/PhysRevLett.97.245901. Epub 2006 Dec 11.
4
Exploring the free-energy landscape of a short peptide using an average force.
J Chem Phys. 2005 Dec 22;123(24):244906. doi: 10.1063/1.2138694.
5
Scalable molecular dynamics with NAMD.
J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289.
6
What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF.
Structure. 2005 Aug;13(8):1107-18. doi: 10.1016/j.str.2005.05.005.
7
Overcoming free energy barriers using unconstrained molecular dynamics simulations.
J Chem Phys. 2004 Aug 15;121(7):2904-14. doi: 10.1063/1.1773132.
8
Homology modelling and molecular dynamics simulations: comparative studies of human aquaporin-1.
Eur Biophys J. 2004 Oct;33(6):477-89. doi: 10.1007/s00249-004-0398-z. Epub 2004 Apr 8.
9
Water and glycerol permeation through the glycerol channel GlpF and the aquaporin family.
J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):86-8. doi: 10.1107/s0909049503023872. Epub 2003 Nov 28.
10
Glycerol conductance and physical asymmetry of the Escherichia coli glycerol facilitator GlpF.
Biophys J. 2003 Nov;85(5):2977-87. doi: 10.1016/S0006-3495(03)74718-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验