Suppr超能文献

几何张量的量子临界标度

Quantum critical scaling of the geometric tensors.

作者信息

Campos Venuti Lorenzo, Zanardi Paolo

机构信息

Institute for Scientific Interchange, Villa Gualino, Viale Settimio Severo 65, I-10133 Torino, Italy.

出版信息

Phys Rev Lett. 2007 Aug 31;99(9):095701. doi: 10.1103/PhysRevLett.99.095701. Epub 2007 Aug 30.

Abstract

Berry phases and the quantum-information theoretic notion of fidelity have been recently used to analyze quantum phase transitions from a geometrical perspective. In this Letter we unify these two approaches showing that the underlying mechanism is the critical singular behavior of a complex tensor over the Hamiltonian parameter space. This is achieved by performing a scaling analysis of this quantum geometric tensor in the vicinity of the critical points. In this way most of the previous results are understood on general grounds and new ones are found. We show that criticality is not a sufficient condition to ensure superextensive divergence of the geometric tensor, and state the conditions under which this is possible. The validity of this analysis is further checked by exact diagonalization of the spin-1/2 XXZ Heisenberg chain.

摘要

贝里相位和保真度的量子信息理论概念最近已被用于从几何角度分析量子相变。在本快报中,我们统一了这两种方法,表明其潜在机制是复张量在哈密顿量参数空间上的临界奇异行为。这是通过在临界点附近对该量子几何张量进行标度分析来实现的。通过这种方式,大多数先前的结果都能基于一般原理得到理解,并且还发现了新的结果。我们表明,临界性并非确保几何张量超广延发散的充分条件,并阐述了实现这一点的条件。通过对自旋 - 1/2 XXZ海森堡链进行精确对角化,进一步检验了该分析的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验