Suppr超能文献

使用互信息和神经网络进行接触预测。

Contact prediction using mutual information and neural nets.

作者信息

Shackelford George, Karplus Kevin

机构信息

Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA.

出版信息

Proteins. 2007;69 Suppl 8:159-64. doi: 10.1002/prot.21791.

Abstract

Prediction of protein structures continues to be a difficult problem, particularly when there are no solved structures for homologous proteins to use as templates. Local structure prediction (secondary structure and burial) is fairly reliable, but does not provide enough information to produce complete three-dimensional structures. Residue-residue contact prediction, though still not highly reliable, may provide a useful guide for assembling local structure prediction into full tertiary prediction. We develop a neural network which is applied to pairs of residue positions and outputs a probability of contact between the positions. One of the neural net inputs is a novel statistic for detecting correlated mutations: the statistical significance of the mutual information between the corresponding columns of a multiple sequence alignment. This statistic, combined with a second statistic based on the propensity of two amino acid types being in contact, results in a simple neural network that is a good predictor of contacts. Adding more features from amino-acid distributions and local structure predictions, the final neural network predicts contacts better than other submitted contact predictions at CASP7, including contact predictions derived from fragment-based tertiary models on free-modeling domains. It is still not known if contact predictions can improve tertiary models on free-modeling domains. Available at http://www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html.

摘要

蛋白质结构预测仍然是一个难题,尤其是在没有已解析的同源蛋白质结构作为模板的情况下。局部结构预测(二级结构和埋藏情况)相当可靠,但无法提供足够信息来生成完整的三维结构。残基-残基接触预测虽然仍不太可靠,但可能为将局部结构预测整合为完整的三级结构预测提供有用指导。我们开发了一种神经网络,将其应用于残基位置对,并输出这些位置之间接触的概率。神经网络的输入之一是一种用于检测相关突变的新统计量:多序列比对中相应列之间互信息的统计显著性。该统计量与基于两种氨基酸类型相互接触倾向的第二种统计量相结合,形成了一个简单的神经网络,它是接触的良好预测器。通过添加来自氨基酸分布和局部结构预测的更多特征,最终的神经网络在CASP7中比其他提交的接触预测能更好地预测接触,包括从基于片段的三级模型推导的关于自由建模域的接触预测。目前尚不清楚接触预测是否能改进自由建模域上的三级模型。可在http://www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验