Suppr超能文献

基因型共受体分析。

Genotypic coreceptor analysis.

作者信息

Sierra S, Kaiser R, Thielen A, Lengauer T

机构信息

Institut für Virologie der Universität zu Köln, Fürst Pückler Str. 56, 50935 Köln, Germany.

出版信息

Eur J Med Res. 2007 Oct 15;12(9):453-62.

Abstract

HIV infects target cells by binding of its envelope gp120 protein to CD4 and a coreceptor on the cell surface. In vivo, the different HIV-strains use either CCR5 or CXCR4 as coreceptor. CCR5-using strains are named R5 viruses, while CXCR4-using strains are named X4. X4 viruses usually occur in the later stages. Coreceptor usage is a marker for disease progression. Additionally interest on coreceptors continually raises as a consequence of the development of a new class of antiretroviral drugs, namely the coreceptor antagonists or blockers. These specific drugs block the CCR5 or the CXCR4 coreceptors. So far, the CXCR4 blockers are not allowed to be used in the clinical practice due to their severe side effects. On the other hand, CCR5 blockers are currently in clinical practice, although they can only be administered after a baseline determination of the coreceptor usage of the predominant viral strain. Most of the coreceptor analyses in clinical cohorts have been performed with commercially available phenotypic assays. As for resistance testing of NRTIs, NNRTIs and PIs, efforts have also been made to predict the coreceptor usage from the genotype of the viruses. Different rules have been published based on the amino acid sequence of the Env-V3 region of HIV-gp120, which is known to be the major determinant of coreceptor usage. Among these, the most widely used is the 11/25 rule. Recently, bioinformatics driven prediction systems have been developed. Three of the interpretation systems are freely available via internet: WetCat, WebPSSM, geno2pheno[coreceptor]. All three systems focus on the Env-V3 region and take the amino acid sequence only into account. They learn from phenotypic and corresponding genotypic data. So far, two cohorts have been analyzed with such a genotypic approach and provided frequencies of R5 virus strains that are within the range of those reported with phenotypic assays. For one of the systems, geno2pheno[coreceptor], additional clinical data (e.g. CD4+T-cell counts) or structural information can be used to improve the prediction. Such genotypic systems provide the possibility for rapid screening of patients who may be administered with CCR5 blockers like the recently licensed Maraviroc.

摘要

人类免疫缺陷病毒(HIV)通过其包膜糖蛋白120(gp120)与细胞表面的CD4和一种共受体结合来感染靶细胞。在体内,不同的HIV毒株使用CCR5或CXCR4作为共受体。使用CCR5的毒株被称为R5病毒,而使用CXCR4的毒株被称为X4病毒。X4病毒通常出现在疾病后期。共受体的使用情况是疾病进展的一个标志。此外,由于一类新型抗逆转录病毒药物即共受体拮抗剂或阻断剂的开发,对共受体的关注度持续提高。这些特定药物可阻断CCR5或CXCR4共受体。到目前为止,CXCR4阻断剂因其严重的副作用而不允许在临床实践中使用。另一方面,CCR5阻断剂目前正在临床实践中使用,尽管只有在对主要病毒株的共受体使用情况进行基线测定后才能给药。临床队列中的大多数共受体分析都是通过市售的表型检测方法进行的。对于核苷类逆转录酶抑制剂(NRTIs)、非核苷类逆转录酶抑制剂(NNRTIs)和蛋白酶抑制剂(PIs)的耐药性检测,人们也一直在努力从病毒基因型预测共受体的使用情况。基于HIV-gp120的Env-V3区域的氨基酸序列已经公布了不同的规则,该区域已知是共受体使用的主要决定因素。其中,使用最广泛的是11/25规则。最近,已经开发了生物信息学驱动的预测系统。其中三个解释系统可通过互联网免费获得:WetCat、WebPSSM、geno2pheno[共受体]。这三个系统都聚焦于Env-V3区域,只考虑氨基酸序列。它们从表型和相应的基因型数据中学习。到目前为止,已经用这种基因型方法分析了两个队列,并提供了R5病毒株的频率,这些频率在表型检测报告的范围内。对于其中一个系统geno2pheno[共受体],可以使用额外的临床数据(如CD4+T细胞计数)或结构信息来改进预测。这种基因型系统为快速筛选可能使用CCR5阻断剂(如最近获批的马拉维若)的患者提供了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验