Chuang Feng-Chuan, Hsieh Yun-Yi, Hsu Chih-Chiang, Albao Marvin A
Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
J Chem Phys. 2007 Oct 14;127(14):144313. doi: 10.1063/1.2775447.
The structures of AgSi(n) (n=1-13) clusters are investigated using first-principles calculations. Our studies suggest that AgSi(n) clusters with n=7 and 10 are relatively stable isomers and that these clusters prefer to be exohedral rather than endohedral. Moreover, doping leaves the inner core structure of the clusters largely intact. Additionally, the plot of fragmentation energies as a function of silicon atoms shows that the AgSi(n) are favored to dissociate into one Ag atom and Si(n) clusters. Alternative pathways exist for n>7 (except n=11) in which the Ag-Si cluster dissociates into a stable Si(7) and a smaller fragment AgSi(n-7). The AgSi(11) cluster dissociates into a stable Si(10) and a small fragment AgSi. Lastly, our analysis indicates that doping of Ag atom significantly decreases the gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital for n>7.
使用第一性原理计算研究了AgSi(n)(n = 1 - 13)团簇的结构。我们的研究表明,n = 7和10的AgSi(n)团簇是相对稳定的异构体,并且这些团簇更倾向于形成外表面而不是内表面。此外,掺杂使团簇的内核结构基本保持完整。另外,作为硅原子函数的碎片化能量图表明,AgSi(n)倾向于分解为一个Ag原子和Si(n)团簇。对于n > 7(n = 11除外)存在其他途径,其中Ag - Si团簇分解为稳定的Si(7)和较小的碎片AgSi(n - 7)。AgSi(11)团簇分解为稳定的Si(10)和小碎片AgSi。最后,我们的分析表明,对于n > 7,Ag原子的掺杂显著减小了最高占据分子轨道和最低未占据分子轨道之间的能隙。