Hoge W Scott, Brooks Dana H
Department of Radiology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:755-8. doi: 10.1109/IEMBS.2006.259697.
Two image reconstruction methods currently dominate parallel MR imaging: SENSE and GRAPPA. While both seek to reconstruct images from subsampled multi-channel MRI data, there exist fundamental differences between the two. In particular, SENSE reconstructs an image of the excited spin-density directly whereas GRAPPA reconstructs estimates of the fully sampled raw coil data and then combines them to obtain an image. In this work we show that these differences can be exploited such that each method can compliment the other. In the case of SENSE, which requires an estimate of the coil sensitivity map before reconstruction, one can use GRAPPA to improve the coil sensitivity estimates. Alternatively, using coil sensitivity estimates and the SENSE reconstruction equations, one can improve the GRAPPA reconstruction parameter estimation. Together, these approaches can provide higher image quality than either method alone.
目前,两种图像重建方法在并行磁共振成像中占据主导地位:灵敏度编码(SENSE)和广义自校准部分并行采集(GRAPPA)。虽然两者都试图从欠采样的多通道磁共振成像数据中重建图像,但两者之间存在根本差异。特别是,SENSE直接重建激发自旋密度的图像,而GRAPPA重建全采样原始线圈数据的估计值,然后将它们组合以获得图像。在这项工作中,我们表明可以利用这些差异,使每种方法相互补充。对于在重建前需要估计线圈灵敏度图的SENSE,可使用GRAPPA来改善线圈灵敏度估计。或者,利用线圈灵敏度估计和SENSE重建方程,可以改进GRAPPA重建参数估计。总之,这些方法可以提供比单独使用任何一种方法更高的图像质量。