Latouche A, Porcher R
Département de Biostatistique et Informatique Médicale, Hôpital Saint-Louis, Université Paris 7, Paris, France.
Stat Med. 2007 Dec 30;26(30):5370-80. doi: 10.1002/sim.3114.
Recently, with the growth of statistical developments for competing risks analysis, some methods have been proposed to compute sample size in this context. These methods differ from a modelling approach: one is based on the Cox regression model for the cause-specific hazard, while another relies on the Fine and Gray regression model for the subdistribution hazard of a competing risk. In this work, we compare these approaches, derive a new sample size for comparing cumulative incidence functions when the hazards are not proportional (either cause-specific or subdistribution) and give practical advices to choose the approach best suited for the study question.
最近,随着竞争风险分析统计方法的发展,已经提出了一些在此背景下计算样本量的方法。这些方法与建模方法不同:一种基于特定病因风险的Cox回归模型,而另一种则依赖于竞争风险的子分布风险的Fine和Gray回归模型。在这项工作中,我们比较了这些方法,推导了在风险不成比例(无论是特定病因风险还是子分布风险)时比较累积发病率函数的新样本量,并给出了选择最适合研究问题的方法的实用建议。