Chen James J, Hsueh Huey-Miin, Delongchamp Robert R, Lin Chien-Ju, Tsai Chen-An
Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA.
BMC Bioinformatics. 2007 Oct 25;8:412. doi: 10.1186/1471-2105-8-412.
Many researchers are concerned with the comparability and reliability of microarray gene expression data. Recent completion of the MicroArray Quality Control (MAQC) project provides a unique opportunity to assess reproducibility across multiple sites and the comparability across multiple platforms. The MAQC analysis presented for the conclusion of inter- and intra-platform comparability/reproducibility of microarray gene expression measurements is inadequate. We evaluate the reproducibility/comparability of the MAQC data for 12901 common genes in four titration samples generated from five high-density one-color microarray platforms and the TaqMan technology. We discuss some of the problems with the use of correlation coefficient as metric to evaluate the inter- and intra-platform reproducibility and the percent of overlapping genes (POG) as a measure for evaluation of a gene selection procedure by MAQC.
A total of 293 arrays were used in the intra- and inter-platform analysis. A hierarchical cluster analysis shows distinct differences in the measured intensities among the five platforms. A number of genes show a small fold-change in one platform and a large fold-change in another platform, even though the correlations between platforms are high. An analysis of variance shows thirty percent of gene expressions of the samples show inconsistent patterns across the five platforms. We illustrated that POG does not reflect the accuracy of a selected gene list. A non-overlapping gene can be truly differentially expressed with a stringent cut, and an overlapping gene can be non-differentially expressed with non-stringent cutoff. In addition, POG is an unusable selection criterion. POG can increase or decrease irregularly as cutoff changes; there is no criterion to determine a cutoff so that POG is optimized.
Using various statistical methods we demonstrate that there are differences in the intensities measured by different platforms and different sites within platform. Within each platform, the patterns of expression are generally consistent, but there is site-by-site variability. Evaluation of data analysis methods for use in regulatory decision should take no treatment effect into consideration, when there is no treatment effect, "a fold-change cutoff with a non-stringent p-value cutoff" could result in 100% false positive error selection.
许多研究人员关注微阵列基因表达数据的可比性和可靠性。微阵列质量控制(MAQC)项目的近期完成提供了一个独特的机会,可用于评估多个位点间的可重复性以及多个平台间的可比性。MAQC分析得出的关于微阵列基因表达测量的平台间和平台内可比性/可重复性的结论并不充分。我们评估了由五个高密度单色微阵列平台和TaqMan技术生成的四个滴定样本中12901个共同基因的MAQC数据的可重复性/可比性。我们讨论了使用相关系数作为评估平台间和平台内可重复性的指标以及使用重叠基因百分比(POG)作为MAQC评估基因选择程序的一种度量所存在的一些问题。
总共293个阵列用于平台内和平台间分析。层次聚类分析显示五个平台之间测量强度存在明显差异。尽管平台间相关性很高,但许多基因在一个平台上显示出较小的倍数变化,而在另一个平台上显示出较大的倍数变化。方差分析表明,样本中30%的基因表达在五个平台上呈现不一致的模式。我们证明POG不能反映所选基因列表的准确性。一个不重叠的基因在严格的阈值下可能是真正差异表达的,而一个重叠的基因在不严格的阈值下可能是非差异表达的。此外,POG是一个不可用的选择标准。随着阈值的变化,POG可能会不规则地增加或减少;没有确定阈值的标准,因此无法优化POG。
使用各种统计方法,我们证明了不同平台以及平台内不同位点测量的强度存在差异。在每个平台内,表达模式通常是一致的,但存在位点间的变异性。在监管决策中评估数据分析方法时,如果没有处理效应,“具有不严格p值阈值的倍数变化阈值”可能会导致100%的假阳性错误选择,此时不应考虑处理效应。