Soula Hédi, Chow Carson C
Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Neural Comput. 2007 Dec;19(12):3262-92. doi: 10.1162/neco.2007.19.12.3262.
We present a simple Markov model of spiking neural dynamics that can be analytically solved to characterize the stochastic dynamics of a finite-size spiking neural network. We give closed-form estimates for the equilibrium distribution, mean rate, variance, and autocorrelation function of the network activity. The model is applicable to any network where the probability of firing of a neuron in the network depends on only the number of neurons that fired in a previous temporal epoch. Networks with statistically homogeneous connectivity and membrane and synaptic time constants that are not excessively long could satisfy these conditions. Our model completely accounts for the size of the network and correlations in the firing activity. It also allows us to examine how the network dynamics can deviate from mean field theory. We show that the model and solutions are applicable to spiking neural networks in biophysically plausible parameter regimes.
我们提出了一种简单的脉冲神经动力学马尔可夫模型,该模型可以通过解析求解来表征有限规模脉冲神经网络的随机动力学。我们给出了网络活动的平衡分布、平均速率、方差和自相关函数的闭式估计。该模型适用于网络中神经元放电概率仅取决于前一个时间 epoch 中放电神经元数量的任何网络。具有统计均匀连通性以及膜和突触时间常数不过长的网络可以满足这些条件。我们的模型完全考虑了网络规模和放电活动中的相关性。它还使我们能够研究网络动力学如何偏离平均场理论。我们表明,该模型和解决方案适用于生物物理上合理参数范围内的脉冲神经网络。