Suppr超能文献

噪声间隙的皮层诱发反应:通道内和跨通道条件

Cortical evoked response to gaps in noise: within-channel and across-channel conditions.

作者信息

Lister Jennifer J, Maxfield Nathan D, Pitt Gabriel J

机构信息

Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA.

出版信息

Ear Hear. 2007 Dec;28(6):862-78. doi: 10.1097/AUD.0b013e3181576cba.

Abstract

OBJECTIVES

The objective of this study was to describe the cortical evoked response to silent gaps in a group of young adults with normal hearing using stimulus conditions identical to those used in psychophysical studies of gap detection. Specifically, we sought to examine the P1-N1-P2 auditory evoked response to the onsets of stimuli (markers) defining a silent gap for within-channel (spectrally identical markers) and across-channel (spectrally different markers) conditions using four perceptually-equated gap durations. It was hypothesized that (1) P1, N1, and P2 would be present and consistent for 1st marker (before the gap) onsets; (2) for within-channel markers, P1, N1, and P2 would be present for 2nd marker (after the gap) onsets only when the gap was of a duration equal to or larger than the behaviorally measured gap detection threshold; and (3) for the across-channel conditions, P1, N1, and P2 would be present for 2nd marker onsets regardless of gap duration. This is expected due to the additional cue of frequency change following the gap.

DESIGN

Twelve young adults (mean age 26 years) with normal hearing participated. Within-channel and across-channel gap detection thresholds were determined using an adaptive psychophysical procedure. Next, cortical auditory evoked potentials (P1-N1-P2) were recorded with a 32-channel Neuroscan electroencephalogram system using within-channel and across-channel markers identical to those used for the psychophysical task and four perceptually weighted gap durations: (1) individual listener's gap detection threshold; (2) above gap detection threshold; (3) below gap detection threshold; and (4) a 1-ms gap identical to the gap in the standard interval of the psychophysical task. P1-N1-P2 peak latencies and amplitudes were analyzed using repeated-measures analyses of variance. A temporal-spatial principal component analysis was also conducted.

RESULTS

The latency of P2 and the amplitude of P1, N1, and P2 were significantly affected by the acoustic characteristics of the 2nd marker as well as the duration of the gap. Larger amplitudes and shorter latencies were generally found for the conditions in which the acoustic cues were most salient (e.g., across-channel markers, 1st markers, large gap durations). Interestingly, the temporal-spatial principal component analysis revealed activity elicited by gap durations equal to gap detection threshold in the latency regions of 167 and 183 ms for temporal-parietal and right-frontal spatial locations.

CONCLUSIONS

The cortical response to a silent gap is unique to specific marker characteristics and gap durations among young adults with normal hearing. Specifically, when the onset of the 2nd marker is perceptually salient, the amplitude of the P1-N1-P2 response is relatively larger and the P2 latency is relatively shorter than for nonsalient 2nd marker onsets, providing noninvasive, nonbehavioral indicators of the neural coding of this important temporal cue in the thalamic-cortical region of the central auditory system. Gap duration appears to be most clearly indicated by P1 and T-complex amplitude.

摘要

目的

本研究的目的是在一组听力正常的年轻成年人中,使用与间隙检测心理物理学研究相同的刺激条件,描述对无声间隙的皮质诱发反应。具体而言,我们试图使用四个感知上等效的间隙持续时间,研究通道内(频谱相同的标记)和跨通道(频谱不同的标记)条件下,对定义无声间隙的刺激起始(标记)的P1-N1-P2听觉诱发反应。假设如下:(1)对于第一个标记(间隙前)的起始,P1、N1和P2会出现且具有一致性;(2)对于通道内标记,仅当间隙持续时间等于或大于行为测量的间隙检测阈值时,P1、N1和P2才会在第二个标记(间隙后)的起始出现;(3)对于跨通道条件,无论间隙持续时间如何,P1、N1和P2都会在第二个标记的起始出现。由于间隙后频率变化的额外线索,预计会出现这种情况。

设计

12名听力正常的年轻成年人(平均年龄26岁)参与了研究。使用自适应心理物理学程序确定通道内和跨通道间隙检测阈值。接下来,使用32通道Neuroscan脑电图系统记录皮质听觉诱发电位(P1-N1-P2),使用与心理物理学任务相同的通道内和跨通道标记以及四个感知加权的间隙持续时间:(1)个体听众的间隙检测阈值;(2)高于间隙检测阈值;(3)低于间隙检测阈值;(4)与心理物理学任务标准间隔中的间隙相同的1毫秒间隙。使用重复测量方差分析对P1-N1-P2的峰值潜伏期和振幅进行分析。还进行了时空主成分分析。

结果

P2的潜伏期以及P1、N1和P2的振幅受到第二个标记的声学特征以及间隙持续时间的显著影响。在声学线索最显著的条件下(例如,跨通道标记、第一个标记、大间隙持续时间),通常会发现更大的振幅和更短的潜伏期。有趣的是,时空主成分分析显示,在颞顶叶和右额叶空间位置的167和183毫秒潜伏期区域,间隙持续时间等于间隙检测阈值时会引发活动。

结论

在听力正常的年轻成年人中,对无声间隙的皮质反应对于特定的标记特征和间隙持续时间是独特的。具体而言,当第二个标记的起始在感知上显著时,P1-N1-P2反应的振幅相对较大,且P2潜伏期比不显著的第二个标记起始相对较短,这为中枢听觉系统丘脑 - 皮质区域中这一重要时间线索的神经编码提供了非侵入性、非行为性指标。间隙持续时间似乎最明显地由P1和T复合波振幅表示。

相似文献

1
Cortical evoked response to gaps in noise: within-channel and across-channel conditions.
Ear Hear. 2007 Dec;28(6):862-78. doi: 10.1097/AUD.0b013e3181576cba.
2
Auditory evoked response to gaps in noise: older adults.
Int J Audiol. 2011 Apr;50(4):211-25. doi: 10.3109/14992027.2010.526967.
3
N1-p2 recordings to gaps in broadband noise.
J Am Acad Audiol. 2013 Jan;24(1):37-45. doi: 10.3766/jaaa.24.1.5.
4
Varying effect of noise on sound onset and acoustic change evoked auditory cortical N1 responses evoked by a vowel-vowel stimulus.
Int J Psychophysiol. 2020 Jun;152:36-43. doi: 10.1016/j.ijpsycho.2020.04.010. Epub 2020 Apr 14.
6
[Characterization of cortical auditory evoked potential (P1-N1-P2) in normal hearing young adults].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017 Feb 20;31(4):262-266. doi: 10.13201/j.issn.1001-1781.2017.04.005.
9
Effect of Consonant Duration on Formation of Consonant-Vowel Syllable Evoked Auditory Cortical Potentials.
J Int Adv Otol. 2018 Apr;14(1):39-43. doi: 10.5152/iao.2017.3389. Epub 2017 Nov 2.

引用本文的文献

1
Age-related differences in auditory spatial processing revealed by acoustic change complex.
Front Hum Neurosci. 2024 Apr 12;18:1342931. doi: 10.3389/fnhum.2024.1342931. eCollection 2024.
2
Assessing Speech Audibility via Syllabic-Rate Neural Responses in Adults and Children With and Without Hearing Loss.
Trends Hear. 2024 Jan-Dec;28:23312165241227815. doi: 10.1177/23312165241227815.
3
Within- and across-frequency temporal processing and speech perception in cochlear implant users.
PLoS One. 2022 Oct 13;17(10):e0275772. doi: 10.1371/journal.pone.0275772. eCollection 2022.
4
Objective evidence of temporal processing deficits in older adults.
Hear Res. 2020 Nov;397:108053. doi: 10.1016/j.heares.2020.108053. Epub 2020 Aug 16.
6
Effect of Consonant Duration on Formation of Consonant-Vowel Syllable Evoked Auditory Cortical Potentials.
J Int Adv Otol. 2018 Apr;14(1):39-43. doi: 10.5152/iao.2017.3389. Epub 2017 Nov 2.
8
Acoustic Change Complex: Clinical Implications.
J Audiol Otol. 2015 Dec;19(3):120-4. doi: 10.7874/jao.2015.19.3.120. Epub 2015 Dec 18.
9
Interaction of Musicianship and Aging: A Comparison of Cortical Auditory Evoked Potentials.
Behav Neurol. 2015;2015:545917. doi: 10.1155/2015/545917. Epub 2015 Oct 4.
10
Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway.
Hear Res. 2015 Apr;322:67-76. doi: 10.1016/j.heares.2014.10.011. Epub 2014 Nov 4.

本文引用的文献

1
A source analysis of the late human auditory evoked potentials.
J Cogn Neurosci. 1989 Fall;1(4):336-55. doi: 10.1162/jocn.1989.1.4.336.
2
Acoustic change complexes recorded in adult cochlear implant listeners.
Ear Hear. 2006 Dec;27(6):678-85. doi: 10.1097/01.aud.0000240620.63453.c3.
3
Brain responses to filled gaps.
Brain Lang. 2007 Mar;100(3):301-16. doi: 10.1016/j.bandl.2006.07.007. Epub 2006 Sep 12.
4
The composite N1 component to gaps in noise.
Clin Neurophysiol. 2005 Nov;116(11):2648-63. doi: 10.1016/j.clinph.2005.08.001. Epub 2005 Oct 10.
5
Effects of age and hearing loss on gap detection and the precedence effect: narrow-band stimuli.
J Speech Lang Hear Res. 2005 Apr;48(2):482-93. doi: 10.1044/1092-4388(2005/033).
8
Linking brainwaves to the brain: an ERP primer.
Dev Neuropsychol. 2005;27(2):183-215. doi: 10.1207/s15326942dn2702_1.
9
Auditory temporal processes in normal-hearing individuals and in patients with auditory neuropathy.
Clin Neurophysiol. 2005 Mar;116(3):669-80. doi: 10.1016/j.clinph.2004.09.027. Epub 2004 Nov 25.
10
Effects of age and hearing loss on gap detection and the precedence effect: broadband stimuli.
J Speech Lang Hear Res. 2004 Oct;47(5):965-78. doi: 10.1044/1092-4388(2004/071).

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验