Jalan Sarika, Bandyopadhyay Jayendra N
Max-Planck Institute for the Physics of Complex Systems, Nöthnitzerstrasse 38, D-01187 Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 2):046107. doi: 10.1103/PhysRevE.76.046107. Epub 2007 Oct 12.
We study complex networks under random matrix theory (RMT) framework. Using nearest-neighbor and next-nearest-neighbor spacing distributions we analyze the eigenvalues of the adjacency matrix of various model networks, namely, random, scale-free, and small-world networks. These distributions follow the Gaussian orthogonal ensemble statistic of RMT. To probe long-range correlations in the eigenvalues we study spectral rigidity via the Delta_{3} statistic of RMT as well. It follows RMT prediction of linear behavior in semilogarithmic scale with the slope being approximately 1pi;{2} . Random and scale-free networks follow RMT prediction for very large scale. A small-world network follows it for sufficiently large scale, but much less than the random and scale-free networks.
我们在随机矩阵理论(RMT)框架下研究复杂网络。利用最近邻和次近邻间距分布,我们分析了各种模型网络(即随机网络、无标度网络和小世界网络)邻接矩阵的特征值。这些分布遵循RMT的高斯正交系综统计。为了探究特征值中的长程相关性,我们还通过RMT的Delta₃统计量研究了谱刚度。它遵循RMT在半对数尺度下线性行为的预测,斜率约为1π² 。随机网络和无标度网络在非常大的尺度下遵循RMT预测。小世界网络在足够大的尺度下遵循该预测,但远小于随机网络和无标度网络。