Suppr超能文献

在褐藻费氏藻染色体中鉴定出两个病毒整合位点。

Identification of two virus integration sites in the brown alga Feldmannia chromosome.

作者信息

Meints Russel H, Ivey Richard G, Lee Amy M, Choi Tae-Jin

机构信息

Department of Microbiology, Pukyong National University, 599-1, Daeyeon 3-Dong, Nam-Gu, Busan 608-737, South Korea.

出版信息

J Virol. 2008 Feb;82(3):1407-13. doi: 10.1128/JVI.01983-07. Epub 2007 Nov 21.

Abstract

Two similar, large double-stranded DNA viruses, Feldmannia species virus 158 (FsV-158) and FsV-178, replicate only in the unilocular reproductive cells (sporangia) of a brown filamentous alga in the genus Feldmannia. Virus particles are not present in vegetative cells but they are produced in the sporangia formed on vegetative filaments that have been transferred newly into culture. Thus, we proposed that these viruses exist in the vegetative cells in a latent form (R. G. Ivey, E. C. Henry, A. M. Lee, L. Klepper, S. K. Krueger, and R. H. Meints, Virology 220:267-273, 1996). In this article we present evidence that the two FsV genomes are integrated into the host genome during vegetative growth. The FsV genome integration sites were identified by cloning the regions where the FsV genome is linked to the host DNA. FsV-158 and FsV-178 are integrated into two distinct locations in the algal genome. In contrast, the integration sites in the two viral genomes are identical. Notably, the integration sites in the host and viruses contain GC and CG dinucleotide sequences, respectively, from which the GC sequences are recovered at both host-virus junctions. The splice sites in the two FsV genomes are predicted to form a stem-loop structure with the CG dinucleotide in the loop portion.

摘要

两种相似的大型双链DNA病毒,费尔德曼藻属病毒158(FsV - 158)和FsV - 178,仅在费尔德曼藻属一种棕色丝状藻的单核生殖细胞(孢子囊)中复制。病毒粒子在营养细胞中不存在,但在新转移到培养基中的营养丝上形成的孢子囊中产生。因此,我们提出这些病毒以潜伏形式存在于营养细胞中(R.G.艾维、E.C.亨利、A.M.李、L.克莱珀、S.K.克鲁格和R.H.梅因茨,《病毒学》220:267 - 273,1996)。在本文中,我们提供证据表明这两种FsV基因组在营养生长期间整合到宿主基因组中。通过克隆FsV基因组与宿主DNA连接的区域来鉴定FsV基因组整合位点。FsV - 158和FsV - 178整合到藻类基因组的两个不同位置。相比之下,两种病毒基因组中的整合位点是相同的。值得注意的是,宿主和病毒中的整合位点分别包含GC和CG二核苷酸序列,在宿主 - 病毒连接处都能回收GC序列。两种FsV基因组中的剪接位点预计会与环部中的CG二核苷酸形成茎环结构。

相似文献

1
Identification of two virus integration sites in the brown alga Feldmannia chromosome.
J Virol. 2008 Feb;82(3):1407-13. doi: 10.1128/JVI.01983-07. Epub 2007 Nov 21.
2
Repetitive DNA insertion in a protein kinase ORF of a latent FSV (Feldmannia sp. virus) genome.
Virology. 1998 Aug 15;248(1):35-45. doi: 10.1006/viro.1998.9245.
3
Molecular cloning and characterization of the DNA adenine methyltransferase gene in Feldmannia sp. virus.
Virus Genes. 2007 Apr;34(2):177-83. doi: 10.1007/s11262-006-0059-7. Epub 2006 Dec 19.
4
Characterization of a repetitive DNA element in a brown algal virus.
Virology. 1995 Oct 1;212(2):474-80. doi: 10.1006/viro.1995.1505.
6
Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae).
J Gen Virol. 1999 Jun;80 ( Pt 6):1367-1370. doi: 10.1099/0022-1317-80-6-1367.
7
A brown algal virus genome contains a "RING" zinc finger motif.
Virology. 1996 May 1;219(1):301-3. doi: 10.1006/viro.1996.0251.
8
A Feldmannia algal virus has two genome size-classes.
Virology. 1996 Jun 15;220(2):267-73. doi: 10.1006/viro.1996.0314.
9
Genomic analysis of the smallest giant virus--Feldmannia sp. virus 158.
Virology. 2009 Feb 5;384(1):223-32. doi: 10.1016/j.virol.2008.10.040. Epub 2008 Dec 2.
10
Comparison of two DNA viruses infecting the marine brown algae Ectocarpus siliculosus and E. fasciculatus.
J Gen Virol. 1996 Sep;77 ( Pt 9):2329-33. doi: 10.1099/0022-1317-77-9-2329.

引用本文的文献

1
Discovery of giant viruses as past and present infections of zoosporic fungi.
bioRxiv. 2025 May 8:2024.01.04.574182. doi: 10.1101/2024.01.04.574182.
2
Multiple, diverse endogenous giant virus elements within the genome of a brown alga.
Virus Evol. 2025 Feb 27;11(1):veaf009. doi: 10.1093/ve/veaf009. eCollection 2025.
4
Viral Complexity.
Biomolecules. 2022 Jul 30;12(8):1061. doi: 10.3390/biom12081061.
5
Molecular fossils reveal ancient associations of dsDNA viruses with several phyla of fungi.
Virus Evol. 2020 Feb 13;6(1):veaa008. doi: 10.1093/ve/veaa008. eCollection 2020 Jan.
6
Evolution of Complex Thallus Alga: Genome Sequencing of .
Front Genet. 2019 May 2;10:378. doi: 10.3389/fgene.2019.00378. eCollection 2019.
8
Plant genomes enclose footprints of past infections by giant virus relatives.
Nat Commun. 2014 Jun 27;5:4268. doi: 10.1038/ncomms5268.
9
Dinoflagellates, diatoms, and their viruses.
J Microbiol. 2008 Jun;46(3):235-43. doi: 10.1007/s12275-008-0098-y. Epub 2008 Jul 5.

本文引用的文献

1
Molecular cloning and characterization of the DNA adenine methyltransferase gene in Feldmannia sp. virus.
Virus Genes. 2007 Apr;34(2):177-83. doi: 10.1007/s11262-006-0059-7. Epub 2006 Dec 19.
2
Mimivirus and the emerging concept of "giant" virus.
Virus Res. 2006 Apr;117(1):133-44. doi: 10.1016/j.virusres.2006.01.008. Epub 2006 Feb 15.
4
The 1.2-megabase genome sequence of Mimivirus.
Science. 2004 Nov 19;306(5700):1344-50. doi: 10.1126/science.1101485. Epub 2004 Oct 14.
5
Phycodnaviridae--large DNA algal viruses.
Arch Virol. 2002 Aug;147(8):1479-516. doi: 10.1007/s00705-002-0822-6.
6
The complete DNA sequence of the Ectocarpus siliculosus Virus EsV-1 genome.
Virology. 2001 Aug 15;287(1):112-32. doi: 10.1006/viro.2001.1028.
7
A hypothesis for DNA viruses as the origin of eukaryotic replication proteins.
J Virol. 2000 Aug;74(15):7079-84. doi: 10.1128/jvi.74.15.7079-7084.2000.
8
Giant viruses infecting algae.
Annu Rev Microbiol. 1999;53:447-94. doi: 10.1146/annurev.micro.53.1.447.
9
Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae).
J Gen Virol. 1999 Jun;80 ( Pt 6):1367-1370. doi: 10.1099/0022-1317-80-6-1367.
10
Repetitive DNA insertion in a protein kinase ORF of a latent FSV (Feldmannia sp. virus) genome.
Virology. 1998 Aug 15;248(1):35-45. doi: 10.1006/viro.1998.9245.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验