Suppr超能文献

人类和黑猩猩微卫星进化的全基因组决定因素。

The genome-wide determinants of human and chimpanzee microsatellite evolution.

作者信息

Kelkar Yogeshwar D, Tyekucheva Svitlana, Chiaromonte Francesca, Makova Kateryna D

机构信息

Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA.

出版信息

Genome Res. 2008 Jan;18(1):30-8. doi: 10.1101/gr.7113408. Epub 2007 Nov 21.

Abstract

Mutation rates of microsatellites vary greatly among loci. The causes of this heterogeneity remain largely enigmatic yet are crucial for understanding numerous human neurological diseases and genetic instability in cancer. In this first genome-wide study, the relative contributions of intrinsic features and regional genomic factors to the variation in mutability among orthologous human-chimpanzee microsatellites are investigated with resampling and regression techniques. As a result, we uncover the intricacies of microsatellite mutagenesis as follows. First, intrinsic features (repeat number, length, and motif size), which all influence the probability and rate of slippage, are the strongest predictors of mutability. Second, mutability increases nonuniformly with length, suggesting that processes additional to slippage, such as faulty repair, contribute to mutations. Third, mutability varies among microsatellites with different motif composition likely due to dissimilarities in secondary DNA structure formed by their slippage intermediates. Fourth, mutability of mononucleotide microsatellites is impacted by their location on sex chromosomes vs. autosomes and inside vs. outside of Alu repeats, the former confirming the importance of replication and the latter suggesting a role for gene conversion. Fifth, transcription status and location in a particular isochore do not influence microsatellite mutability. Sixth, compared with intrinsic features, regional genomic factors have only minor effects. Finally, our regression models explain approximately 90% of variation in microsatellite mutability and can generate useful predictions for the studies of human diseases, forensics, and conservation genetics.

摘要

微卫星的突变率在不同位点之间差异很大。这种异质性的原因在很大程度上仍然是个谜,但对于理解众多人类神经疾病和癌症中的基因不稳定至关重要。在这项首次全基因组研究中,利用重采样和回归技术研究了内在特征和区域基因组因素对直系同源人类-黑猩猩微卫星之间突变性变异的相对贡献。结果,我们揭示了微卫星诱变的复杂性如下。首先,内在特征(重复次数、长度和基序大小)都影响滑动的概率和速率,是突变性的最强预测因子。其次,突变性随长度非均匀增加,这表明除滑动之外的过程,如错误修复,也会导致突变。第三,具有不同基序组成的微卫星之间的突变性不同,这可能是由于它们的滑动中间体形成的二级DNA结构不同。第四,单核苷酸微卫星的突变性受其在性染色体与常染色体上的位置以及在Alu重复序列内部与外部的位置影响,前者证实了复制的重要性,后者表明基因转换起了作用。第五,转录状态和在特定等臂染色体中的位置不影响微卫星的突变性。第六,与内在特征相比,区域基因组因素的影响较小。最后,我们的回归模型解释了微卫星突变性变异的约90%,并可为人类疾病、法医学和保护遗传学研究产生有用的预测。

相似文献

1
The genome-wide determinants of human and chimpanzee microsatellite evolution.
Genome Res. 2008 Jan;18(1):30-8. doi: 10.1101/gr.7113408. Epub 2007 Nov 21.
2
Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8748-53. doi: 10.1073/pnas.122067599. Epub 2002 Jun 17.
3
Replication slippage versus point mutation rates in short tandem repeats of the human genome.
Mol Genet Genomics. 2008 Jan;279(1):53-61. doi: 10.1007/s00438-007-0294-1. Epub 2007 Oct 10.
4
Divergent microsatellite evolution in the human and chimpanzee lineages.
FEBS Lett. 2007 May 29;581(13):2523-6. doi: 10.1016/j.febslet.2007.04.073. Epub 2007 May 4.
6
Evidence for nonindependent evolution of adjacent microsatellites in the human genome.
J Mol Evol. 2009 Feb;68(2):160-70. doi: 10.1007/s00239-008-9192-3. Epub 2009 Jan 30.
7
A matter of life or death: how microsatellites emerge in and vanish from the human genome.
Genome Res. 2011 Dec;21(12):2038-48. doi: 10.1101/gr.122937.111. Epub 2011 Oct 12.
9
Intragene higher order repeats in neuroblastoma breakpoint family genes distinguish humans from chimpanzees.
Mol Biol Evol. 2011 Jun;28(6):1877-92. doi: 10.1093/molbev/msr009. Epub 2011 Jan 27.

引用本文的文献

1
3
Inherent instability of simple DNA repeats shapes an evolutionarily stable distribution of repeat lengths.
bioRxiv. 2025 Jan 10:2025.01.09.631797. doi: 10.1101/2025.01.09.631797.
4
Fitness landscapes of human microsatellites.
PLoS Genet. 2024 Dec 30;20(12):e1011524. doi: 10.1371/journal.pgen.1011524. eCollection 2024 Dec.
6
Genomic microsatellite characteristics analysis of (Anguilliformes, Dysommidae), based on high-throughput sequencing technology.
Biodivers Data J. 2023 Apr 7;11:e100068. doi: 10.3897/BDJ.11.e100068. eCollection 2023.
7
The evolutionary loss of the Eh1 motif in FoxE1 in the lineage of placental mammals.
PLoS One. 2023 Dec 27;18(12):e0296176. doi: 10.1371/journal.pone.0296176. eCollection 2023.
8
Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species.
Animals (Basel). 2023 Nov 21;13(23):3601. doi: 10.3390/ani13233601.
10
Sequence variants affecting the genome-wide rate of germline microsatellite mutations.
Nat Commun. 2023 Jun 29;14(1):3855. doi: 10.1038/s41467-023-39547-6.

本文引用的文献

1
Genome-wide transcription and the implications for genomic organization.
Nat Rev Genet. 2007 Jun;8(6):413-23. doi: 10.1038/nrg2083. Epub 2007 May 8.
2
Detecting microsatellites within genomes: significant variation among algorithms.
BMC Bioinformatics. 2007 Apr 18;8:125. doi: 10.1186/1471-2105-8-125.
3
The influence of recombination on human genetic diversity.
PLoS Genet. 2006 Sep 22;2(9):e148. doi: 10.1371/journal.pgen.0020148. Epub 2006 Jul 31.
4
The rise, fall and renaissance of microsatellites in eukaryotic genomes.
Bioessays. 2006 Oct;28(10):1040-50. doi: 10.1002/bies.20470.
5
An isochore map of human chromosomes.
Genome Res. 2006 Apr;16(4):536-41. doi: 10.1101/gr.4910606.
7
A fine-scale map of recombination rates and hotspots across the human genome.
Science. 2005 Oct 14;310(5746):321-4. doi: 10.1126/science.1117196.
8
Repeat instability: mechanisms of dynamic mutations.
Nat Rev Genet. 2005 Oct;6(10):729-42. doi: 10.1038/nrg1689.
9
The scale of mutational variation in the murid genome.
Genome Res. 2005 Aug;15(8):1086-94. doi: 10.1101/gr.3895005. Epub 2005 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验