Zhu Ji-min, Tang Lin-hua, Zhou Shui-sen, Huang Fang
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, China.
Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2007 Jun;25(3):232-6.
To explore the application of seasonal time series ARIMA model in prediction of malaria incidence in an unstable malaria area.
SPSS13.0 software was used to construct the ARIMA model based on the monthly malaria incidence of Huaiyuan and Tongbai counties in Huaihe River Valley, from Jan. 1998 to Dec. 2005, with consideration of residual un-correlation and conclusion. Akaike's information criterion (AIC) and Bayesian information criterion (BIC) were used to confirm the fitness of model. The constructed model was then applied to predict the monthly malaria incidence in 2006 and the incidence from ARIMA model was compared with the actual incidence, so as to evaluate the model's validity. Malaria incidence of 2007 was predicted by ARIMA model based on malaria incidence from 1998 to 2006.
Statistics assisted estimation of the significance of the fitted autoregressive and seasonal moving average coefficients (AR1=0.512, SMA1=0.609, P<0.01). ARIMA (1,0,0)(0,1,1)12 model, with AIC=67.01, BIC= 71.87 and white noise for predicting error, exactly fitted the incidence of the previous monthly incidence from Jan. 1998 to Dec. 2005, and the predicted monthly incidence in 2006 by the model was consistent with the actual incidence. Malaria incidence of 2007 would be 106.50/100 000, with a peak incidence during July and October.
The model of ARIMA seems to be an appropriate model to fit exactly the changes of malaria incidence and to predict the future incidence trend, with a high prediction precision of short term time series.
探讨季节性时间序列自回归积分滑动平均(ARIMA)模型在不稳定疟疾流行区疟疾发病率预测中的应用。
利用SPSS13.0软件,根据1998年1月至2005年12月淮河流域怀远县和桐柏县的月疟疾发病率构建ARIMA模型,同时考虑残差的不相关性和结论。采用赤池信息准则(AIC)和贝叶斯信息准则(BIC)来确定模型的拟合优度。然后将构建的模型应用于预测2006年的月疟疾发病率,并将ARIMA模型得出的发病率与实际发病率进行比较,以评估模型的有效性。基于1998年至2006年的疟疾发病率,用ARIMA模型预测2007年的疟疾发病率。
通过统计辅助估计拟合的自回归和季节性移动平均系数的显著性(AR1 = 0.512,SMA1 = 0.609,P < 0.01)。ARIMA(1,0,0)(0,1,1)12模型,AIC = 67.01,BIC = 71.87,预测误差为白噪声,精确拟合了1998年1月至2005年12月前一月的发病率,该模型预测的2006年月发病率与实际发病率一致。2007年疟疾发病率将为106.50/10万,发病高峰在7月和10月。
ARIMA模型似乎是一个合适的模型,能够精确拟合疟疾发病率的变化并预测未来发病率趋势,对短期时间序列具有较高的预测精度。