Golland Polina, Golland Yulia, Malach Rafael
Computer Science and Artificial Intelligence Laboratory, MIT, USA.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):110-8. doi: 10.1007/978-3-540-75757-3_14.
In functional connectivity analysis, networks of interest are defined based on correlation with the mean time course of a user-selected 'seed' region. In this work we propose to simultaneously estimate the optimal representative time courses that summarize the fMRI data well and the partition of the volume into a set of disjoint regions that are best explained by these representative time courses. Our approach offers two advantages. First, is removes the sensitivity of the analysis to the details of the seed selection. Second, it substantially simplifies group analysis by eliminating the need for a subject-specific threshold at which correlation values are deemed significant. This unsupervised technique generalizes connectivity analysis to situations where candidate seeds are difficult to identify reliably or are unknown. Our experimental results indicate that the functional segmentation provides a robust, anatomically meaningful and consistent model for functional connectivity in fMRI.
在功能连接性分析中,感兴趣的网络是基于与用户选择的“种子”区域的平均时间进程的相关性来定义的。在这项工作中,我们建议同时估计能很好地总结功能磁共振成像(fMRI)数据的最优代表性时间进程,以及将体积划分为一组不相交区域的划分,而这些区域能由这些代表性时间进程得到最佳解释。我们的方法有两个优点。首先,它消除了分析对种子选择细节的敏感性。其次,它通过消除对每个受试者特定的相关性值被视为显著的阈值的需求,大大简化了组分析。这种无监督技术将连接性分析推广到难以可靠识别候选种子或候选种子未知的情况。我们的实验结果表明,功能分割为fMRI中的功能连接性提供了一个稳健、具有解剖学意义且一致的模型。