Suppr超能文献

将功能磁共振成像(fMRI)数据进行无监督分割以检测空间激活模式。

Detection of spatial activation patterns as unsupervised segmentation of fMRI data.

作者信息

Golland Polina, Golland Yulia, Malach Rafael

机构信息

Computer Science and Artificial Intelligence Laboratory, MIT, USA.

出版信息

Med Image Comput Comput Assist Interv. 2007;10(Pt 1):110-8. doi: 10.1007/978-3-540-75757-3_14.

Abstract

In functional connectivity analysis, networks of interest are defined based on correlation with the mean time course of a user-selected 'seed' region. In this work we propose to simultaneously estimate the optimal representative time courses that summarize the fMRI data well and the partition of the volume into a set of disjoint regions that are best explained by these representative time courses. Our approach offers two advantages. First, is removes the sensitivity of the analysis to the details of the seed selection. Second, it substantially simplifies group analysis by eliminating the need for a subject-specific threshold at which correlation values are deemed significant. This unsupervised technique generalizes connectivity analysis to situations where candidate seeds are difficult to identify reliably or are unknown. Our experimental results indicate that the functional segmentation provides a robust, anatomically meaningful and consistent model for functional connectivity in fMRI.

摘要

在功能连接性分析中,感兴趣的网络是基于与用户选择的“种子”区域的平均时间进程的相关性来定义的。在这项工作中,我们建议同时估计能很好地总结功能磁共振成像(fMRI)数据的最优代表性时间进程,以及将体积划分为一组不相交区域的划分,而这些区域能由这些代表性时间进程得到最佳解释。我们的方法有两个优点。首先,它消除了分析对种子选择细节的敏感性。其次,它通过消除对每个受试者特定的相关性值被视为显著的阈值的需求,大大简化了组分析。这种无监督技术将连接性分析推广到难以可靠识别候选种子或候选种子未知的情况。我们的实验结果表明,功能分割为fMRI中的功能连接性提供了一个稳健、具有解剖学意义且一致的模型。

相似文献

1
Detection of spatial activation patterns as unsupervised segmentation of fMRI data.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):110-8. doi: 10.1007/978-3-540-75757-3_14.
2
Finding landmarks in the functional brain: detection and use for group characterization.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):476-83. doi: 10.1007/11566489_59.
3
A nonparametric bayesian approach to detecting spatial activation patterns in fMRI data.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):217-24. doi: 10.1007/11866763_27.
4
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
5
Exploratory fMRI analysis without spatial normalization.
Inf Process Med Imaging. 2009;21:398-410. doi: 10.1007/978-3-642-02498-6_33.
6
Unsupervised learning of brain states from fMRI data.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):201-8. doi: 10.1007/978-3-642-15745-5_25.
7
A general framework for image segmentation using ordered spatial dependency.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):848-55. doi: 10.1007/11866763_104.
8
Simultaneous registration and segmentation of anatomical structures from brain MRI.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):17-25. doi: 10.1007/11566465_3.
9
Boost up the detection sensitivity of ASL perfusion fMRI through support vector machine.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1006-9. doi: 10.1109/IEMBS.2006.260382.
10
Support vector clustering for brain activation detection.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):572-9. doi: 10.1007/11566465_71.

引用本文的文献

1
Spatio-functional parcellation of resting state fMRI.
Proc IEEE Southwest Symp Image Anal Interpret. 2024 Mar;2024:1-4. doi: 10.1109/ssiai59505.2024.10508652. Epub 2024 Apr 29.
2
CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex.
Netw Neurosci. 2024 Dec 10;8(4):1439-1466. doi: 10.1162/netn_a_00409. eCollection 2024.
3
Automatic parcellation of resting-state cortical dynamics by iterative community detection and similarity measurements.
AIMS Neurosci. 2021 Sep 10;8(4):526-542. doi: 10.3934/Neuroscience.2021028. eCollection 2021.
4
Machine learning in resting-state fMRI analysis.
Magn Reson Imaging. 2019 Dec;64:101-121. doi: 10.1016/j.mri.2019.05.031. Epub 2019 Jun 5.
6
Spatial Patterns and Functional Profiles for Discovering Structure in fMRI Data.
Conf Rec Asilomar Conf Signals Syst Comput. 2008 Oct;2008:1402-1409. doi: 10.1109/ACSSC.2008.5074650.
7
EXPLORING FUNCTIONAL CONNECTIVITY IN FMRI VIA CLUSTERING.
Proc IEEE Int Conf Acoust Speech Signal Process. 2009 Apr;2009:441-444. doi: 10.1109/ICASSP.2009.4959615.
8
Parcellating connectivity in spatial maps.
PeerJ. 2015 Feb 19;3:e784. doi: 10.7717/peerj.784. eCollection 2015.
9
GraSP: geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex.
Neuroimage. 2015 Feb 1;106:207-21. doi: 10.1016/j.neuroimage.2014.11.008. Epub 2014 Nov 11.
10
Which fMRI clustering gives good brain parcellations?
Front Neurosci. 2014 Jul 1;8:167. doi: 10.3389/fnins.2014.00167. eCollection 2014.

本文引用的文献

1
Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation.
Cereb Cortex. 2007 Apr;17(4):766-77. doi: 10.1093/cercor/bhk030. Epub 2006 May 12.
2
Detection of signal synchronizations in resting-state fMRI datasets.
Neuroimage. 2006 Jan 1;29(1):321-7. doi: 10.1016/j.neuroimage.2005.06.054. Epub 2005 Aug 29.
3
Tensorial extensions of independent component analysis for multisubject FMRI analysis.
Neuroimage. 2005 Mar;25(1):294-311. doi: 10.1016/j.neuroimage.2004.10.043. Epub 2005 Jan 8.
4
Feature characterization in fMRI data: the Information Bottleneck approach.
Med Image Anal. 2004 Dec;8(4):403-19. doi: 10.1016/j.media.2004.09.001.
5
Hierarchical clustering to measure connectivity in fMRI resting-state data.
Magn Reson Imaging. 2002 May;20(4):305-17. doi: 10.1016/s0730-725x(02)00503-9.
6
A multistep unsupervised fuzzy clustering analysis of fMRI time series.
Hum Brain Mapp. 2000 Aug;10(4):160-78. doi: 10.1002/1097-0193(200008)10:4<160::aid-hbm20>3.0.co;2-u.
7
Automated model-based tissue classification of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):897-908. doi: 10.1109/42.811270.
8
A hierarchical clustering method for analyzing functional MR images.
Magn Reson Imaging. 1999 Jul;17(6):817-26. doi: 10.1016/s0730-725x(99)00014-4.
9
On clustering fMRI time series.
Neuroimage. 1999 Mar;9(3):298-310. doi: 10.1006/nimg.1998.0391.
10
A sequence of object-processing stages revealed by fMRI in the human occipital lobe.
Hum Brain Mapp. 1998;6(4):316-28. doi: 10.1002/(SICI)1097-0193(1998)6:4&#x0003c;316::AID-HBM9&#x0003e;3.0.CO;2-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验