Roy Arunabha S, Gopinath Ajay, Rangarajan Anand
Imaging Technologies Laboratory, GE Global Research Center, Bangalore, India.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):942-9. doi: 10.1007/978-3-540-75757-3_114.
There exists a large body of literature on shape matching and registration in medical image analysis. However, most of the previous work is focused on matching particular sets of features--point-sets, lines, curves and surfaces. In this work, we forsake specific geometric shape representations and instead seek probabilistic representations--specifically Gaussian mixture models--of shapes. We evaluate a closed-form distance between two probabilistic shape representations for the general case where the mixture models differ in variance and the number of components. We then cast non-rigid registration as a deformable density matching problem. In our approach, we take one mixture density onto another by deforming the component centroids via a thin-plate spline (TPS) and also minimizing the distance with respect to the variance parameters. We validate our approach on synthetic and 3D arterial tree data and evaluate it on 3D hippocampal shapes.
在医学图像分析中,存在大量关于形状匹配和配准的文献。然而,以前的大多数工作都集中在匹配特定的特征集——点集、线、曲线和曲面。在这项工作中,我们舍弃了特定的几何形状表示,转而寻求形状的概率表示——具体来说是高斯混合模型。对于混合模型在方差和分量数量上不同的一般情况,我们评估了两个概率形状表示之间的闭式距离。然后,我们将非刚性配准转化为一个可变形密度匹配问题。在我们的方法中,我们通过薄板样条(TPS)使分量质心变形,将一个混合密度映射到另一个混合密度上,同时也相对于方差参数最小化距离。我们在合成数据和三维动脉树数据上验证了我们的方法,并在三维海马形状上对其进行了评估。